Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pyrolysis mass spectrometry analyses of poly(3-methylthiophene)
Date
2005-01-01
Author
Gozet, Tuba
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
In this work, pyrolysis mass spectrometry techniques were applied to investigate the thermal and the structural characteristics of electrochemically prepared BF4- doped poly(3-methylthiophene) (PMTh) and to explore the effect of methyl substitution on thermal and structural characteristics of polythiophene (PTh). It has been determined that thermal degradation of BF4- doped PMTh films occurs in two steps as in the case of polythiophene. The first step was assigned to the loss of the dopant, and the second step to the degradation of the polymer backbone producing segments of various conjugation lengths. Detection of H2S, C3H4, and C2H2 in the final stage of pyrolysis was again associated with a network structure. Significant decrease in the relative intensities of dopant-based products indicated decrease in extent of doping. However, as dopant-based products of PMTh appeared at slightly higher temperatures, a stronger interaction between the dopant and the host polymer PMTh may be proposed. Decomposition of polymer during dedoping pointed out that electrochemical reversibility of the transition between the doped and undoped states is limited for PMTh.
Subject Keywords
Poly(3-methylthiophene)
,
Conducting polymer
,
Pyrolysis mass spectrometry
,
Thermal degradation
URI
https://hdl.handle.net/11511/30947
Journal
Journal of Analytical and Applied Pyrolysis
DOI
https://doi.org/10.1016/j.jaap.2005.02.003
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Investigation of the effect of dopant on characteristics of poly(3-methyl thiophene) via pyrolysis mass spectrometry
Gözet, Tuba; Önal, Ahmet Muhtar; Hacaloğlu, Jale (2007-03-01)
In this work, a direct insertion probe pyrolysis mass spectrometry technique was applied to investigate the thermal and the structural characteristics of electrochemically prepared PF6- and BF4- doped poly(3-methylthiophene) (PMTh) to explore the effect of dopant on thermal and structural characteristics. It has been determined that the thermal degradation of PMTh occurs in two steps as in the case of polythiophene, (PTh). The first step was assigned to the loss of the dopant, and the second step to the deg...
Pyrolysis mass spectrometry analysis of BF4 - doped polythiophene
Gozet, Tuba; Hacaloğlu, Jale; Önal, Ahmet Muhtar (2004-06-01)
Pyrolysis of electrochemically prepared BF4- doped polythiophene (PTh) by direct insertion probe and Currie point pyrolysis gas chromatography mass spectrometry techniques indicated that thermal decomposition of PTh occurs in two steps. In accordance with literature results, the first step is assigned to the loss of the dopant, and the second step to the degradation of the polymer backbone producing segments of various conjugation lengths. At elevated temperatures, detection of products such as H2S and C2H2...
Characterization of polyaniline via pyrolysis mass spectrometry
Hacaloğlu, Jale; Kücükyavuz, Zühal (2008-04-05)
In this work, direct insertion probe pyrolysis mass spectrometry technique was applied to investigate the thermal and the structural characteristics of electrochemically prepared HCl and HNO3-doped polyaniline (PANI) films. It has been determined that the thermal degradation of both samples showed three main thermal degradation stages. The first stage around 50-60 degrees C was associated with evolution of solvent and low-molecular-weight species adsorbed on the polymer, the second stage just above 150 degr...
Pyrolysis mass spectrometry analysis of thiophene capped poly(methyl methacrylate) and poly(methylthienyl methacrylate)
Hacaloğlu, Jale; Toppare, Levent Kamil (2003-06-01)
The thermal degradations of thiophene-capped poly(methyl methacrylate) and poly(methylthienyl methacrylate) were studied via direct pyrolysis mass spectrometry. No significant effect of heating rate on the thermal degradation behaviors of the polymers under investigation have been observed in the heating range studied. It has been determined that thermal degradation of thiophene-capped poly(methyl methacrylate), (TPMMA) mainly yields monomer as in the case of pristine poly(methyl methacrylate). An analogous...
A pyrolysis mass spectrometry study of polythiophene - Natural rubber and polythiophene - Synthetic rubber conducting polymer composites
Yigit, S.; Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
The thermal behaviors and degradation products of conducting polymer composites prepared by electrooxidation of thiophene using natural rubber or synthetic rubber as the insulating matrix were studied by direct and indirect mass spectrometry techniques. The pyrolysis mass data revealed that a chemical interaction formed between the components of the composites during polymerization. Thermal characteristics of rubbers totally disappeared in the composites indicating presence of some chain scissions leading t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Gozet and J. Hacaloğlu, “Pyrolysis mass spectrometry analyses of poly(3-methylthiophene),”
Journal of Analytical and Applied Pyrolysis
, pp. 257–262, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30947.