# Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effect

2018-09-15
The direct and optimal control solution of the laminar, fully developed, steady MHD flow of an incompressible, electrically conducting fluid in a duct is considered together with the heat transfer. The flow is driven by a constant pressure gradient and an external uniform magnetic field. The fluid viscosity is temperature dependent varying exponentially and the Hall effect, viscous and Joule dissipations are taken into consideration. The control problem is solved by the discretize-then-optimize approach using mixed finite element method for the MHD and energy equations. The control formulations with the Hall and viscosity parameters, the Hartmann and Brinkmann number are given to regain the desired velocity and temperature of the MHD flow.
COMPUTERS & MATHEMATICS WITH APPLICATIONS

# Suggestions

 Controlling the power law fluid flow and heat transfer under the external magnetic field using the flow index and the Hartmann number Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2018-10-01) The direct and optimal control solution of laminar fully developed, steady Magnetohydrodynamics (MHD) flow of an incompressible, electrically conducting power-law non-Newtonian fluid in a square duct is considered with the heat transfer. The fluid is subjected to an external uniform magnetic field as well as a constant pressure gradient. The apparent fluid viscosity is both a function of the unknown velocity and the flow index which makes the momentum equation nonlinear. Viscous and Joule dissipation terms ...
 Controlling the power law fluid flow and heat transfer under the external magnetic field using the flow index and the Hartmann number Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2018-10-01) The direct and optimal control solution of laminar fully developed, steady Magnetohydrodynamics (MHD) flow of an incompressible, electrically conducting power-law non-Newtonian fluid in a square duct is considered with the heat transfer. The fluid is subjected to an external uniform magnetic field as well as a constant pressure gradient. The apparent fluid viscosity is both a function of the unknown velocity and the flow index which makes the momentum equation nonlinear. Viscous and Joule dissipation terms ...
 The application of BEM to MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity Ebren Kaya, Elif; Tezer, Münevver ( EC LTD.; 2018-07-11) The steady, laminar, fully developed MHD flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum equation for the pipe-axis velocity and the energy equation are solved iteratively. Firstly, the momentum equation is solved by using the...
 Time varying control of magnetohydrodynamic duct flow Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2021-09-01) Optimal control of the unsteady, laminar, fully developed flow of a viscous, incompressible and electrically conducting fluid is considered under the effect of a time varying magnetic field B0(t) applied in the direction making an angle with the y–axis. Thus, the coefficients of convection terms in the Magnetohydrodynamics (MHD) equations are also time-dependent. The coupled time-dependent MHD equations are solved by using the mixed finite element method (FEM) in space and the implicit Euler scheme in time....
 Optimal Control for the MHD Fow and Heat Transfer with Variable Viscosity in a Square Duct Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (null; 2018-06-08) The direct and optimal control solution of the laminar, fully developed, steady MHD flow of an incompressible, electrically conducting fluid in a duct is considered together with the heat transfer. The flow is driven by a constant pressure gradient and an external uniform magnetic field. The fluid viscosity is either temperature dependent, varying exponentially, or it depends on the flow in the case of power law fluid; and the viscous and Joule dissipations are taken into consideration. The coupled nonline...
Citation Formats
C. EVCİN, Ö. Uğur, and M. Tezer, “Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effect,” COMPUTERS & MATHEMATICS WITH APPLICATIONS, pp. 1338–1355, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31002. 