Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effect
Date
2018-09-15
Author
EVCİN, CANSU
Uğur, Ömür
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
249
views
0
downloads
Cite This
The direct and optimal control solution of the laminar, fully developed, steady MHD flow of an incompressible, electrically conducting fluid in a duct is considered together with the heat transfer. The flow is driven by a constant pressure gradient and an external uniform magnetic field. The fluid viscosity is temperature dependent varying exponentially and the Hall effect, viscous and Joule dissipations are taken into consideration. The control problem is solved by the discretize-then-optimize approach using mixed finite element method for the MHD and energy equations. The control formulations with the Hall and viscosity parameters, the Hartmann and Brinkmann number are given to regain the desired velocity and temperature of the MHD flow.
Subject Keywords
MHD
,
FEM
,
Variable viscosity
,
Optimal control
,
Heat transfer
URI
https://hdl.handle.net/11511/31002
Journal
COMPUTERS & MATHEMATICS WITH APPLICATIONS
DOI
https://doi.org/10.1016/j.camwa.2018.06.027
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Controlling the power law fluid flow and heat transfer under the external magnetic field using the flow index and the Hartmann number
Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2018-10-01)
The direct and optimal control solution of laminar fully developed, steady Magnetohydrodynamics (MHD) flow of an incompressible, electrically conducting power-law non-Newtonian fluid in a square duct is considered with the heat transfer. The fluid is subjected to an external uniform magnetic field as well as a constant pressure gradient. The apparent fluid viscosity is both a function of the unknown velocity and the flow index which makes the momentum equation nonlinear. Viscous and Joule dissipation terms ...
Controlling the power law fluid flow and heat transfer under the external magnetic field using the flow index and the Hartmann number
Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2018-10-01)
The direct and optimal control solution of laminar fully developed, steady Magnetohydrodynamics (MHD) flow of an incompressible, electrically conducting power-law non-Newtonian fluid in a square duct is considered with the heat transfer. The fluid is subjected to an external uniform magnetic field as well as a constant pressure gradient. The apparent fluid viscosity is both a function of the unknown velocity and the flow index which makes the momentum equation nonlinear. Viscous and Joule dissipation terms ...
The BEM Solutions of MHD Flow and Heat Transfer in a Rectangular Duct with Temperature Dependent Viscosity
Kaya, Elif Ebren; Tezer, Münevver (2019-01-01)
The steady, laminar, fully developed magnetohydrodynamic (MHD) flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum and the energy equations are solved iteratively. Firstly, the momentum equation is solved by using the boundary ele...
The application of BEM to MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity
Ebren Kaya, Elif; Tezer, Münevver ( EC LTD.; 2018-07-11)
The steady, laminar, fully developed MHD flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum equation for the pipe-axis velocity and the energy equation are solved iteratively. Firstly, the momentum equation is solved by using the...
Time varying control of magnetohydrodynamic duct flow
Evcin, Cansu; Uğur, Ömür; Tezer, Münevver (2021-09-01)
Optimal control of the unsteady, laminar, fully developed flow of a viscous, incompressible and electrically conducting fluid is considered under the effect of a time varying magnetic field B0(t) applied in the direction making an angle with the y–axis. Thus, the coefficients of convection terms in the Magnetohydrodynamics (MHD) equations are also time-dependent. The coupled time-dependent MHD equations are solved by using the mixed finite element method (FEM) in space and the implicit Euler scheme in time....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. EVCİN, Ö. Uğur, and M. Tezer, “Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effect,”
COMPUTERS & MATHEMATICS WITH APPLICATIONS
, pp. 1338–1355, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31002.