Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis
Date
2017-01-01
Author
Bilecen, Deniz Sezlev
Carlos Rodriguez-Cabello, Jose
Uludag, Hasan
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
Osteoporosis, a systemic skeletal disorder, occurs when bone turnover balance is disrupted. With the identification of the genes involved in the pathogenesis of the disease, studies on development of new treatments has intensified. Shortinterfering RNA (siRNA)is used to knockdown disease related gene expressions. Targeting siRNA in vivo is challenging. The maintenance of therapeutic plasma level is hampered by clearance of siRNA from the body. Targeted systems are useful in increasing the drug concentration at the target site and decreasing side effects. Aim of the present study was to develop an injectable siRNA delivery system toprotect siRNA during systemic distribution and target the siRNA to bone tissue using a thermoresponsive, genetically engineered, elastin-like recombinamer (ELR), designed to interact withthe mineral component of bone. The delivery system consisted of DNAoligo as a siRNA substitute complexed with the cationic polymer, polyethyleneimine (PEI), at N/P ratio of 20. The complex was encapsulated in poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules. PLGA capsules were characterized bySEM, TEM and XPS. FTIR was used to show the preferential attachment of ELR to HAp. Encapsulation efficiency of the complex in PLGA nanocapsules was 48%. The release kinetics of the complex fits the Higuchi release kinetics.
Subject Keywords
Osteoporosis
,
Targeted delivery
,
SiRNA
,
Nanocapsules
,
PLGA
URI
https://hdl.handle.net/11511/31053
Journal
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
DOI
https://doi.org/10.1080/09205063.2017.1354675
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Development of PEI-RANK siRNA Complex Loaded PLGA Nanocapsules for the Treatment of Osteoporosis
Bilecen, Deniz Sezlev; Uludag, Hasan; Hasırcı, Vasıf Nejat (2018-04-30)
Osteoporosis, which is characterized by low bone mineral density and susceptibility to fracture, is caused by increased osteoclastic activity. Receptor activator of nuclear factor kappa B ligand (RANKL)/RANK signaling plays an important role in osteoclast differentiation and activation. The current treatment strategies for osteoporosis do not directly address this underlying cause and generates undesired side effects. This led to emergence of controlled delivery systems to increase drug bioavailability and ...
Development of a siRNA delivery system for the treatment of osteoporosis
Sezlev Bilecen, Deniz; Hasırcı, Vasıf Nejat; Uludağ, Hasan; Department of Biotechnology (2018)
Osteoporosis, the most common disease of bone, is a skeletal disorder associated with low bone mass, increase in bone fragility and in susceptibility to fractures. The high bone resorption rate is shown to be due to increased number and activity of the osteoclasts. Receptor Activator of Nuclear Factor kappa B (RANK)/ Receptor Activator of Nuclear Factor kappa B Ligand (RANKL) system plays a crucial role in osteoclast differentiation and bone remodeling. RANKL participates in differentiation and activation o...
Etiology of senile osteoporosis - A hypothesis
Atik, O. Sahap; Uslu, M. Murad; Eksioglu, Fatih; Satana, Tolgay (Ovid Technologies (Wolters Kluwer Health), 2006-02-01)
Osteoporosis is a major health problem characterized by compromised bone strength predisposing patients to an increased risk of fracture. It may cause morbidity and mortality in elderly men and women. The etiologic factors that lead to senile osteoporosis still are unclear.
Design and Development of a Low Cost Device for Bone Fracture Detection Using FFT Technique on MATLAB
Qadir, Zakria; Ali, Muhammad; Nesimoglu, Tayfun (2018-11-02)
Bone fracture is a common problem in daily life which occurs when high pressure is applied on bone or by simple accident and also due to osteoporosis and bone cancer. Different techniques are used today to detect bone fractures such as X-Ray, Computed Tomography (CT-scan), Magnetic Resonance Imaging (MRI) and Ultrasound. Among these four modalities, X-ray diagnosis is commonly used for fracture detection. However, if the fracture is complicated, a CT scan or MRI may be needed for further diagnosis and opera...
Improvement of bioactivity with dual bioceramic incorporation to nanofibrous PCL scaffolds
Altunordu, Gercem; Tezcaner, Ayşen; Evis, Zafer; Keskin, Dilek (2023-03-01)
Bone tissue injuries, diseases or related clinical interventions require bone tissue engineering (BTE) approaches for regeneration of large bone defects, especially for compromised situations. Most BTE applications in literature focused on composites of polymers with a single type of bioceramic. However, native bone matrix has various inorganic components. Accordingly, this study aimed to investigate the use of dual bioceramics in BTE scaffolds prepared by wet-electrospinning of Poly-caprolactone (PCL) and ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. S. Bilecen, J. Carlos Rodriguez-Cabello, H. Uludag, and V. N. Hasırcı, “Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis,”
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
, pp. 1859–1873, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31053.