Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of iron and molybdenum addition on photofermentative hydrogen production from olive mill wastewater
Date
2011-05-01
Author
Eroglu, Ela
Gündüz, Ufuk
Yucel, Meral
Eroglu, Inci
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
Photofermentative hydrogen production from olive mill wastewater (OMW) by Rhodobacter sphaeroides O.U.001 was assessed under iron and molybdenum supplementation. Control cultures were only grown with 2% OMW containing media. The analysis included measurements of biomass accumulation, hydrogen production, pH variations of the medium, and changes in the chemical oxygen demand (COD) of the wastewater. Growth under control and Mo-supplemented experiments yielded about the same amount of biomass (similar to 0.4 g dry cell weight per L culture). On the other hand, Mo addition slightly enhanced the total volume of H-2 gas production (62 mL H-2), in comparison with the control reactor (40 mL H-2). Fe-supplemented cultures showed a significant increase on H-2 production (125 mL H-2), tough having a longer lag time for the observation of the first H-2 bubbles (24 h), compared to the control (15 h) and Mo-supplemented ones (15 h). Fe-added cultures also yielded better wastewater treatment by achieving 48.1% degradation of the initial chemical oxygen demand (COD) value compared to the control reactor having 30.2% COD removal efficiency. Advances described in this work have the potential to find applications in hydrogen industry while attempting an effective management of cheap feedstock utilization. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Biological hydrogen production
,
Olive mill wastewater
,
Iron
,
Molybdenum
,
Wastewater treatment
,
Rhodobacter sphaeroides
URI
https://hdl.handle.net/11511/31080
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2011.02.062
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater
Eroglu, Ela; Eroglu, Inci; Gündüz, Ufuk; Yuecel, Meral (2008-10-01)
The aim of this paper was to gain further insight into the effect of the clay pretreatment process oil photofermentative hydrogen production. This two-stage process involved a clay pretreatment step followed by photofermentation. which was performed under anaerobic conditions with the illumination by Tungsten lamps. Rhodobacter sphaeroUts O.U.001 was used for photofermentation. Higher amounts of color (65%), total phenol (81%) and chemical oxygen demand (3%) removal efficiencies were achieved after clay pre...
Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production
Eroglu, Ela; Erolu, Inci; Gündüz, Ufuk; Yucel, Meral (2009-04-01)
in this study various two-stage processes were investigated for biological hydrogen production from olive mill wastewater (OMW) by Rhodobacter sphaeroides O.U.001. Two-stage processes consist of physicochemical pretreatment of OMW followed by photofermentation for hydrogen production. Explored pretreatment methods were chemical oxidation with ozone and Fenton's reagent, photodegradation by UV radiation, and adsorption with clay or zeolite. Among these different two-stage processes, strong chemical oxidants ...
Biological hydrogen production from olive mill wastewater with two-stage processes
Eroglu, Ela; Eroglu, Inci; Gündüz, Ufuk; Turker, Lemi; Yucel, Meral (2006-09-01)
In the present work two novel two-stage hydrogen production processes from olive mill wastewater (OMW) have been introduced. The first two-stage process involved dark-fermentation followed by a photofermentation process. Dark-fermentation by activated sludge cultures and photofermentation by Rhodobacter sphaeroides O.U.001 were both performed in 55 ml glass vessels, under anaerobic conditions. In some cases of dark-fermentation, activated sludge was initially acclimatized to the OMW to provide the adaptatio...
Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock
Eroglu, Ela; Gündüz, Ufuk; Yucel, Meral; Eroglu, Inci (2010-06-01)
Photofermentative hydrogen production from olive mill wastewater by Rhodobacter sphaeroides O.U.001 was investigated under different regimes of illumination. The analysis included measurements of biomass accumulation, H(2)-production, high-value bio-product accumulation (polyhydroxybutyrate and carotenoid) and measurements of the medium pH as a function of growth and productivity. Batch cultures were grown under continuous light (CL) or 12 h light/12 h dark (12L/12D) diurnal cycles. Growth under CL or 12L/1...
Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001
Yetis, M; Gündüz, Ufuk; Eroglu, I; Yucel, M; Turker, L (2000-11-01)
Pretreated sugar refinery wastewater (SRWW) was used for the production of hydrogen by Rhodobacter sphaeroides O.U.001 in a 0.4 1 column photobioreactor. Hydrogen was produced at a rate of 0.001 1 hydrogen/h/l culture in 20% dilution of SRWW. To adjust the carbon concentration to 70 mM and nitrogen concentration to 2 mM, sucrose or l-malic acid was added as carbon source and sodium glutamate was added as nitrogen source to the 20% dilution of SRWW. By these adjustments, hydrogen production rate was increase...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Eroglu, U. Gündüz, M. Yucel, and I. Eroglu, “Effect of iron and molybdenum addition on photofermentative hydrogen production from olive mill wastewater,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 5895–5903, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31080.