Summertime aerosol chemical composition in the Eastern Mediterranean and its sensitivity to temperature

2012-04-01
Im, Ulas
Markakis, Kostas
Koçak, Mustafa
Gerasopoulos, Evangelos
Daskalakis, Nikos
Mihalopoulos, Nikolaos
Poupkou, Anastasia
Kındap, Tayfun
Ünal, Alper
Kanakidou, Maria
The impact of ambient temperature on the levels and chemical composition of aerosols over the Eastern Mediterranean in July 2004 is investigated using the WRF/CMAQ model system coupled with the MEGAN biogenic emissions model. CMAQ is able to capture the observed mean aerosol concentrations over the studied period. Non-sea-salt sulfate (nss-SO42-) is calculated to be the major aerosol component contributing by 63%, 16% and 40% to the fine (PM2.5), coarse (PM2.5-10) and total particulate matter mass (PM10), respectively. PM2.5 to PM10 mass ratios reach more than 80% over the large urban agglomerations but decrease to 45% at downwind locations suggesting coagulation and condensation on coarse particles. Higher temperatures increase biogenic emissions, enhance spatially-averaged biogenic secondary organic aerosol (SOA, by 0.01 +/- 0.00 mu g m(-3) K-1) and nitrate (NO3-) aerosol concentrations (by 0.02 +/- 0.02 mu g m(-3) K-1). They reduce nss-SO42- (by -0.04 +/- 0.07 mu g m(-3) K-1), induced by significant reduction in the cloud cover (90% K-1) and subsequent aqueous-phase production. The PM2.5 concentrations show a very small positive response to temperature changes, increasing by 0.003 +/- 0.042 mu g m(-3) K-1 (0.04% K-1) due to the compensation of organic carbon increases by nss-SO42- reductions. Locally, larger changes are computed, with nss-SO42- and NO3- in fine aerosols reduced by up to 0.62 mu g m(-3) K-1 and 0.80 mu g m(-3) K-1, respectively. Increases as high as 0.097 mu g m(-3) K-1 and 0.034 mu g m(-3) K-1 are calculated for organic and elemental carbon, respectively. Results show that changes in temperature modify not only the aerosol mass but also its chemical composition.
ATMOSPHERIC ENVIRONMENT

Suggestions

Seasonal variability of optical properties of aerosols in the Eastern Mediterranean
Vrekoussis, M; Liakakou, E; Koçak, Mustafa; Kubilay, N; Oikonomou, K; Sciare, J; Mihalopoulos, N (2005-12-01)
The aerosol optical properties (scattering and absorption coefficients) were investigated at two remote locations in the Eastern Mediterranean in conjunction with aerosol ion composition measurements: Finokalia in the Crete Island in Greece (March 2001-June 2002) and Erdemli in Turkey (July 1999-June 2000). Ambient light-scattering coefficient (sigma(sp-532 nm)) at Finokalia had a mean value of 50 +/- 23 Mm(-1) while at Erdemli this value was 90 +/- 160 Mm(-1), due to a severe dust event that occurred from ...
Temporal variations and sources of Eastern Mediterranean aerosols based on a 9-year observation
ÖZTÜRK, FATMA; zararsız, Abdullah; Dutkiewicz, V. A.; Husain, L.; Hopke, P. K.; Tuncel, Süleyman Gürdal (2012-12-01)
Concentrations of 48 elements, NO3-, SO42-, CI-, NH4+ and black carbon (BC) were determined in PM10 aerosols collected daily at a rural Eastern Mediterranean (EM) site (Antalya, 30.34 degrees E, 36.47 degrees N) from 1993 to 2001. Temporal variations (daily, seasonal and long term), sources and source regions of EM aerosols were delineated. Concentrations of elements with marine and crustal origin were more episodic as compared to anthropogenic ones. Most of the variables showed well defined seasonal cycles...
Atmospheric trace element and major ion concentrations over the eastern Mediterranean Sea: Identification of anthropogenic source regions
GÜLLÜ, GÜLEN; DOĞAN, GÜRAY; Tuncel, Süleyman Gürdal (2005-11-01)
Concentrations of elements and ions measured in aerosol samples collected from March 1992 to the end of December 1993 were investigated to identify source regions affecting chemical composition of aerosols in the eastern Mediterranean atmosphere. Collected samples were analyzed for approximately 40 elements and ions using a combination of atomic absorption spectrometry, instrumental neutron activation analysis, ion chromatography and colorimetry. Statistical techniques, such as enrichment factors and a non-...
Megacities as hot spots of air pollution in the East Mediterranean
Kanakidou, Maria; et. al. (2011-02-01)
This paper provides a comprehensive overview of the actual knowledge on the atmospheric pollution sources, transport, transformation and levels in the East Mediterranean. It focuses both on the background atmosphere and on the similarities and differences between the urban areas that exhibited important urbanization the past years: the two megacities Istanbul, Cairo and the Athens extended area. Ground-based observations are combined with satellite data and atmospheric modeling. The overall evaluation point...
Temporal variability of atmospheric trace element concentrations over the eastern Mediterranean Sea
GÜLLÜ, GÜLEN; Ölmez, İlhan; Tuncel, Süleyman Gürdal (2000-07-01)
Concentrations of elements and ions measured in aerosol samples collected between March 1992 and December 1993 were investigated to understand temporal variability of elemental concentrations. Collected samples were analyzed by atomic absorption spectrometry, instrumental neutron activation analysis, ion chromatography and colorimetry for approximately 40 elements and major ionic species. Concentrations of elements were found to vary greatly on time scales ranging from days to seasons. Short-term variations...
Citation Formats
U. Im et al., “Summertime aerosol chemical composition in the Eastern Mediterranean and its sensitivity to temperature,” ATMOSPHERIC ENVIRONMENT, pp. 164–173, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31108.