Integrated Radiolaria, benthic foraminifera and conodont biochronology of the pelagic Permian blocks/tectonic slices and geochemistry of associated volcanic rocks from the Mersin Melange, southern Turkey: Implications for the Permian evolution of the northern Neotethys

Sayıt, Kaan
Bedi, Yavuz
Noble, Paula J.
Krystyn, Leopold
Göncüoğlu, Mehmet Cemal
Blocks and tectonic slices within the Mersin Melange (southern Turkey), which are of Northern Neotethyan origin (Izmir-Ankara-Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well-preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end-Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano-sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.


An example of an accretionary fore-arc basın from Northern Central Anatolia and its implicaiıons for the history of subduction of neo-tethys in Turkey
KOCYIGIT, A (1991-01-01)
Deformed sedimentary sequences of Late Cretaceous-middle Eocene age located between the Sakarya continent and the Anatolian Complex have been interpreted as the fill of a forearc basin. The history and structure of this basin are critical for understanding the evolution of the Neo-Tethyan subduction in the Middle East. I test and elaborate upon this interpretation on the basis of three basic outcrop areas of Upper Cretaceous-lower Tertiary sedimentary sequences confined to a northeast-southwest-trending b...
ERGIN, M; OKYAR, M; TIMUR, K (Elsevier BV, 1992-02-29)
High-resolution shallow-seismic reflection (Uniboom) profiles obtained in inner and mid-shelf areas of eastern Mersin Bay (Turkey, northeastern Mediterranean) show that the sedimentary column comprises two major and distinct lithological sequences (C and B) separated by a reflector (R) which is interpreted as the pre-Holocene surface. The upper sedimentary sequence (C) is thought to represent roughly the Holocene and is characterized by parallel/divergent to sigmoidal reflection patterns above (Unit 1) and ...
Biostratigraphy of Lower Permian foraminiferal assemblages from platform-slope carbonate blocks within the Mersin Melange, southern Turkey: Paleogeographical implications
Okuyucu, Cengiz; TEKİN, UĞUR KAĞAN; Bedi, Yavuz; Sayıt, Kaan (2020-04-01)
The Mersin Melange (MM) as a part of the Mersin Ophiolitic Complex in southern Turkey is a sedimentary complex including blocks and tectonic slices within a Late Cretaceous matrix. Two blocks (Keven and Cingeypinari) within the MM originated from the northern branch of Neotethys (Izmir-Ankara-Erzincan Ocean) and have been studied in detail using foraminiferal assemblages to correlate them with coeval successions in the Taurides and to approach the Early Permian evolution of the northern branch of the Neotet...
Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: Implications for mantle sources and melting processes
ALDANMAZ, ERCAN; KÖPRÜBAŞI, NEZİHİ; GÜRER, ÖMER FEYZİ; Kaymakcı, Nuretdin; Gourgaud, Alan (Elsevier BV, 2006-01-01)
The volcanic province of North-West Turkey contains a number of intra-continental alkaline volcanic eruption sequences formed along the localized extensional basins developed in relation with the Late Cenozoic extensional processes. The volcanic suite comprises the extracted melt products of adiabatic decompression melting of the mantle that are represented by small-volume intra-continental plate volcanic rocks of alkaline olivine basalts and basanites with compositions representative of mantle-derived, pri...
Ellero, Alessandro; Ottria, Giuseppe; Sayıt, Kaan; Catanzariti, Rita; Frassi, Chiara; Göncüoğlu, Mehmet Cemal; Marroni, Michele; Pandolfi, Luca (2015-01-01)
In the Central Pontides (Northern Turkey), south of Tosya, a tectonic unit consisting of not-metamorphic volcanic rocks and overlying sedimentary succession is exposed inside a fault-bounded elongated block. It is restrained within a wide shear zone, where the Intra-Pontide suture zone, the Sakarya terrane and the Izmir-Ankara-Erzincan suture zone are juxtaposed as result of strike-slip activity of the North Anatolian shear zone. The volcanic rocks are mainly basalts and basaltic andesites (with their pyroc...
Citation Formats
U. K. TEKİN et al., “Integrated Radiolaria, benthic foraminifera and conodont biochronology of the pelagic Permian blocks/tectonic slices and geochemistry of associated volcanic rocks from the Mersin Melange, southern Turkey: Implications for the Permian evolution of the northern Neotethys,” ISLAND ARC, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: