Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A visual object tracking benchmark for cell motility in time-lapse imaging
Date
2019-09-01
Author
Demir, H. Seckin
Cetin, A. Enis
Atalay, Rengül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Automatic tracking of cells is a widely studied problem in various biomedical applications. Although there are numerous approaches for the video object tracking task in different contexts, the performance of these methods depends on many factors regarding the specific application they are used for. This paper presents a comparative study that specifically targets cell tracking problem and compares performance behavior of the recent algorithms. We propose a framework for the performance evaluation of the tracking algorithms and compare several state-of-the-art object tracking approaches on an extensive time-lapse inverted microscopy dataset. We report the quantitative evaluations of the algorithms based on success rate and precision performance metrics.
Subject Keywords
Tracking benchmark
,
Cell motility
,
Visual object tracking
URI
https://hdl.handle.net/11511/31192
Journal
SIGNAL IMAGE AND VIDEO PROCESSING
DOI
https://doi.org/10.1007/s11760-019-01443-2
Collections
Graduate School of Informatics, Article