Ni-55 nanocluster: a density functional theory study of the binding energy of nickel and ethylene adsorption

Yilmazer, Nusret Duygu
Fellah, Mehmet Ferdi
Önal, Işık
Ethylene adsorption on a Ni-55 nanocluster was studied by Weal IS of the density functional theory (DFT)/B3LYP using the basis sets of 6-31G(d,p) and 86-411(41d)G in Gaussian 03. The Ni-55 nanocluster was found to have a distorted icosahedral geometry, in accordance with the experimental findings. The binding energy value for the Ni-55 nanocluster was calculated to be 3.51 eV/atom using equilibrium geometry calculations. The estimated bulk nickel binding energy was in reasonable agreement with the experimental value (4.85 versus 4.45 eV/atom). In addition, equilibrium geometry calculations were performed for ethylene adsorption on the Ni-55 nanocluster for 2 different coordination numbers of 6 and 8 with pi-adsorption modes. The related adsorption energies were computed as -0.87 and -0.68 eV, respectively.


Exciton related optical absorption in a spherical quantum dot
Aksahin, Ertan; Unal, Vildan Ustoglu; Tomak, Mehmet (2014-11-10)
An exciton in a spherical quantum dot is studied analytically within the effective mass approximation. A parabolic confinement under an electric field is considered. The linear and nonlinear optical absorption coefficients are calculated within the density matrix formalism. No assumptions are made about the strength of the confinement. It is shown how the competing mechanisms of the Coulomb interaction, the confinement and the applied static electric field affect the optical absorption.
ELSAID, M; Tomak, Mehmet (1991-02-01)
The binding energy for on-centre impurities in a rectangular quantum well wire is calculated as a function of the width of the wire and perpendicular magnetic field. The results for zero-magnetic-field cases are in perfect agreement with previous calculations.
HF and DFT studies and vibrational spectra of 1,2-bis(2-pyridyl) ethylene and its zinc (II) halide complexes
Ozhamam, Z.; Yurdakul, Murat Hayrettin; Yurdakul, S. (2007-03-11)
Ab initio restricted Hartree-Fock and density function theory calculations using BLYP, B3LYP and B3PW91 functionals were carried out to study molecular structure and vibrational spectrum of 1,2-bis(2-pyridyl)ethylene (which is abbreviated as bpe). Comparison of calculated and experimental results indicates the density functional B3LYP and BLYP/6-311G* methods are more accurate in predicting fundamental vibrational frequencies than the scaled other approaches. On the basis of calculated results, assignment o...
Angle of graph energy - A spectral measure of resemblance of isomeric molecules
Gutman, I; Türker, Burhan Lemi (2003-11-01)
A method, elaborated earlier by one of the present authors, for measuring the structural resemblance of isomeric alternant conjugated hydrocarbons, based on a graph-spectral quantity theta, called the angle of total pi-electron energy approach has been extended now to arbitrary molecules. Some general properties of theta have been established.
Thermal Rearrangements of 1-Ethynyl-2-methylcyclopropane: A Computational Study
Bozkaya, Ugur; Özkan, İlker (2012-03-29)
In this research, a comprehensive theoretical investigation of the thermal rearrangements of 1-ethynyl-2-methylcyclopropane is carried out employing density functional theory (DFT), with the B3LYP functional, and high-level ab initio methods, such as the complete active space self-consistent field (CASSCF), multireference second-order Moller-Plesset perturbation theory (MRMP2), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. In all computations Pople's polarized triple-zeta spli...
Citation Formats
N. D. Yilmazer, M. F. Fellah, and I. Önal, “Ni-55 nanocluster: a density functional theory study of the binding energy of nickel and ethylene adsorption,” TURKISH JOURNAL OF CHEMISTRY, pp. 55–67, 2012, Accessed: 00, 2020. [Online]. Available: