Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MAGNETIC-FIELD DEPENDENCE OF HYDROGENIC IMPURITY STATES IN A QUANTUM-WELL WIRE
Date
1991-02-01
Author
ELSAID, M
Tomak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
176
views
0
downloads
Cite This
The binding energy for on-centre impurities in a rectangular quantum well wire is calculated as a function of the width of the wire and perpendicular magnetic field. The results for zero-magnetic-field cases are in perfect agreement with previous calculations.
Subject Keywords
BINDING-ENERGY
URI
https://hdl.handle.net/11511/33341
Journal
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS
DOI
https://doi.org/10.1007/bf02463992
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Exciton related optical absorption in a spherical quantum dot
Aksahin, Ertan; Unal, Vildan Ustoglu; Tomak, Mehmet (2014-11-10)
An exciton in a spherical quantum dot is studied analytically within the effective mass approximation. A parabolic confinement under an electric field is considered. The linear and nonlinear optical absorption coefficients are calculated within the density matrix formalism. No assumptions are made about the strength of the confinement. It is shown how the competing mechanisms of the Coulomb interaction, the confinement and the applied static electric field affect the optical absorption.
Interacting quantum topologies and the quantum Hall effect
Balachandran, A. P.; Gupta, Kumar S.; Kürkcüoğlu, Seçkin (World Scientific Pub Co Pte Lt, 2008-04-10)
The algebra of observables of planar electrons subject to a constant background magnetic field B is given by A(theta)(R-2) circle times A(theta)(R-2) (theta = -4/eB), the product of two mutually commuting Moyal algebras. It describes the free Hamiltonian and the guiding center coordinates. We argue that A(theta)(R-2) itself furnishes a representation space for the actions of these two Moyal algebras, and suggest physical arguments for this choice of the representation space. We give the proper setup to coup...
Magnetic dipole moment of the light tensor mesons in light cone QCD sum rules
Alıyev, Tahmasıb; Savcı, Mustafa (IOP Publishing, 2010-07-01)
The magnetic dipole moments of the light tensor mesons f(2), a(2) and the strange K-2*(0)(1430) tensor meson are calculated in the framework of the light cone QCD sum rules. It is observed that the values of the magnetic dipole moment for the charged tensor particles are considerably different from zero. These values are very close to zero for the light neutral f(2) and a(2) tensor mesons, while it has a small nonzero value for the neutral strange K-2*(0)(1430) tensor meson.
MAGNETOHYDRODYNAMIC FLOW IN ELECTRODYNAMICALLY COUPLED RECTANGULAR DUCTS
Tezer, Münevver (Wiley, 1988-06-01)
In Sezgin1,2 the problems considered are the magnetohydrodynamic (MHD) flows in an electrodynamically conducting infinite channel and in a rectangular duct respectively, in the presence of an applied magnetic field. In the present paper we extend the solution procedure of these papers to two rectangular channels connected by a barrier which is partially conductor and partially insulator. The problem has been reduced to the solution of a pair of dual series equations and then to the solution of a Fredholm's ...
Thermal convection in the presence of a vertical magnetic field
Guray, E.; Tarman, H. I. (Springer Science and Business Media LLC, 2007-11-01)
The interaction between thermal convection and an external uniform magnetic field in the vertical is numerically simulated within a computational domain of a horizontally periodic convective box between upper and lower rigid plates. The numerical technique is based on a spectral element method developed earlier to simulate natural thermal convection. In this work, it is extended to a magnetoconvection problem. Its main features are the use of rescaled Legendre-Lagrangian polynomial interpolants in expanding...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. ELSAID and M. Tomak, “MAGNETIC-FIELD DEPENDENCE OF HYDROGENIC IMPURITY STATES IN A QUANTUM-WELL WIRE,”
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS
, pp. 165–168, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33341.