Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A density functional theory study of C-H bond activation of methane on a bridge site of M-O-M-ZSM-5 Clusters (M = Au, Ag, Fe and Cu)
Date
2011-02-01
Author
Kurnaz, Emine
Fellah, Mehmet Ferdi
Önal, Işık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
C-H bond activation of methane on a bridge site M-O-M- of ZSM-5 (M = Au, Ag, Fe and Cu) clusters has been performed by means of Density Functional Theory (DFT) calculations with the utilization of [Si6Al2O9H14(M-O-M](2+) (where M = Au, Ag, Fe and Cu) cluster models representing ZSM-5 surfaces. According to the activation barrier data based on TS calculations. The following activity order of clusters with respect to their activation barriers could be classified: Ag approximate to Au > Cu Fe for Metal-O-Metal-ZSM-5 clusters. Activation barriers for C-H bond activation of methane on Au-O-Au- and Ag-O-Ag-ZSM-5 clusters are calculated as 4.83 and 4.79 kcal/mol, respectively. These values are lower than the activation barrier values for C-H bond activation on Cu-O-Cu-ZSM-5 and Fe-O-Fe-ZSM-5 which are 9.69 and 26.30 kcal/mol, respectively. Activation process is exothermic on Au-O-Au-, Cu-O-Cu-, and Fe-O-Fe-ZSM-5 clusters whereas it is endothermic on Ag-O-Ag-ZSM-5 cluster.
Subject Keywords
DFT
,
Methane
,
C-H bond activation
,
Metal dimer
,
ZSM-5
URI
https://hdl.handle.net/11511/31288
Journal
MICROPOROUS AND MESOPOROUS MATERIALS
DOI
https://doi.org/10.1016/j.micromeso.2010.09.028
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
C-H bond activation of methane on M- and MO-ZSM-5 (M = Ag, Au, Cu, Rh and Ru) clusters: A density functional theory study
Fellah, Mehmet Ferdi; Önal, Işık (2011-08-10)
Density functional theory (DFT) calculations were carried out in a study of C-H bond activation of methane on [(SiH3)(4)AlO4(M, MO)] (where M = Ag, Au, Cu, Rh and Ru) cluster models representing ZSM-5 surfaces. The following activity order of clusters with respect to their activation barriers could be qualitatively classified: Au >> Rh > Cu = Ru > Ag for metal-ZSM-5 clusters and Ag > Cu > Au >> Rh > Ru for Metal-O-ZSM-5 clusters. Therefore, activation barriers based on transition state calculations showed t...
A density functional theory study of oxidation of benzene to phenol by N2O on Fe- and Co-ZSM-5 clusters
Fellah, Mehmet Ferdi; Önal, Işık (2009-06-01)
Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N2O on relaxed [(SiH3)(4)AlO4M] (where M=Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formatio...
A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface
Soyer, Sezen; Uzun, Alper; Senkan, Selim; Önal, Işık (2006-12-15)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by means of density functional theory (DFT) calculations performed at B3LYP/6-31G** level. The computations indicated that SCR reaction consisted of three main parts. For the first part, ammonia activation on V2O5 was investigated. Ammonia was adsorbed on Bronsted acidic V-OH site as NH4+ species by a non-activated process with an exothermic relati...
A van der Waals density functional investigation of carboranethiol self-assembled monolayers on Au(111)
Yılmaz, Ayşen; Danışman, Mehmet Fatih (2016-05-14)
Isolated and full monolayer adsorption of various carboranethiol (C2B10H12S) isomers on the gold(111) surface has been investigated using both the standard and van der Waals density functional theory calculations. The effect of different molecular dipole moment orientations on the low energy adlayer geometries, the binding characteristics and the electronic properties of the self-assembled monolayers of these isomers has been studied. Specifically, the binding energy and work function changes associated wit...
A Density Functional Theory Study of Direct Oxidation of Benzene to Phenol by N2O on a [FeO](1+)-ZSM-5 Cluster
Fellah, Mehmet Ferdi; Önal, Işık; van Santen, Rutger A. (2010-07-29)
Density functional theory calculations were carried out in a study of the oxidation of benzene to phenol by N2O on a model (FeO)(1+)-ZSM-5 cluster: the [(SiH3)(4)AlO4(FeO)] cluster. This cluster models the reactivity of Fe3+ oxidic clusters. Results are to be compared with an earlier study (J. Phys. Chem. C 2009, 113, 15307) on a model Fe2+-ZSM-5 cluster. The true activation energies for the elementary reaction step in which phenol is produced appear to be comparable. The major difference between the two sy...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Kurnaz, M. F. Fellah, and I. Önal, “A density functional theory study of C-H bond activation of methane on a bridge site of M-O-M-ZSM-5 Clusters (M = Au, Ag, Fe and Cu),”
MICROPOROUS AND MESOPOROUS MATERIALS
, pp. 68–74, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31288.