PERMEABILITY PROPERTIES OF CHARGED HYDROGEL-CARRYING MEMBRANES

1990-02-01
Poly(2-vinylpyridine) is known to be hydrophobic, and a membrane prepared from it would not permeate water-soluble substances in aqueous media. By introducing hydrophilic poly(2-vinyl-N-methylpyridinium iodide) particles into the membrane, it would be possible to control permeation. This type of membrane was prepared and an increase in permeability was observed on increasing the amount of hydrophilic component in the membrane and decreasing the crosslink density of the hydrogel part. The size of the hydrogel particles did not have a significant effect on permeability. Scanning electron microscopy and microscopic examinations showed a homogeneous distribution of hydrogel particles in the membrane matrix.

Suggestions

PERMEABILITY OF PHEMA MEMBRANES PREPARED BY PHOTOINITIATION
ARICA, MY; Hasırcı, Vasıf Nejat (1993-01-01)
Poly(2-hydroxyethyl methacrylate) membranes were prepared in aqueous media with different ions and ionic strengths. The enzyme glucose oxidase was incorporated into some of these membranes. It was found that membrane water contents and ionic strengths have a linear relationship as long as the salt is not changed. When the salt was varied, only a relationship between salt concentration and water content could be observed. The membrane permeabilities were all found to be of the same order (10(-8) cm2 s-1) but...
Peroxidation of membrane lipids in minimally processed cucumbers packaged under modified atmospheres
Karakaş, Barçın; Yıldız, Fatih; Department of Food Engineering (2002)
Peroxidation of membrane lipids is an inherent feature of ripening and senescence of plant tissues. Increased lipid peroxidation has also been observed in the development of chilling injury in susceptible tissues. In this study, the effect of storage conditions and physical tissue damage on membrane peroxidation of minimally processed cucumber (Cucumis sativus, L.) was investigated. Model modified atmospheres were achieved passively by storage of the minimally processed cucumbers at 4°C and 20°C in hermetic...
Viscosity measurement and modeling of lipid supercritical carbon dioxide mixtures
Yener, Meryem Esra; Rizvi, SSH; Harriott, P (1998-01-31)
The viscosities of supercritical carbon dioxide (SC-CO2) containing different levels of methyl oleate and oleic acid were measured with a high pressure capillary viscometer. The SC-CO2-methyl oleate system was evaluated at 313.15, 323.15 and 333.15 K and 11.5, 13.7 and 15.5 MPa, respectively. The SC-CO2-oleic acid system was evaluated at 313.15 K and 20.5 and 30.0 MPa and 333.15 K and 30.0 MPa. The increase in SC-CO2 viscosity was as high as 15-20% at the maximum methyl oleate concentrations (4-5 wt%) and 6...
MODELING AND KINETICS OF LIGHT-INDUCED PROTON PUMPING OF BACTERIORHODOPSIN RECONSTITUTED LIPOSOMES
EROGLU, I; ZUBAT, BM; Yücel, Ayşe Meral (1991-09-01)
Purple membrane fragments isolated from the cell membrane of the photosynthetic bacteria Halobacterium halobium S.9 strain are incorporated into egg yolk phosphatidylcholine liposomes. Purple membrane contains crystalline patches of a retinal protein called bacteriorhodopsin. Upon illumination, bacteriorhodopsin undergoes a reversible photoreaction in which a proton is released on one side of the membrane and a proton is bound on the other side, thus resulting in an electro-chemical gradient across the me...
Celulose Membranes for Organic Solvent Nanofiltration
Çulfaz Emecen, Pınar Zeynep; Elif Nur, Durmaz (2015-11-19)
Cellulose membranes were fabricated by phase inversion from solutions of cellulose in 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) as solvent and acetone as volatile cosolvent. The rejection of Bromothymol Blue (624 Da) in ethanol increased and the permeance decreased by increasing the cellulose concentration in the solution prior to coagulation, either by having more cellulose in the starting solution or by evaporating the volatile cosolvent. Drying the membranes after coagulation further increased the ...
Citation Formats
H. AKIN, V. N. Hasırcı, and N. Hasırcı, “PERMEABILITY PROPERTIES OF CHARGED HYDROGEL-CARRYING MEMBRANES,” POLYMER, pp. 270–275, 1990, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31339.