Celulose Membranes for Organic Solvent Nanofiltration

2015-11-19
Cellulose membranes were fabricated by phase inversion from solutions of cellulose in 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) as solvent and acetone as volatile cosolvent. The rejection of Bromothymol Blue (624 Da) in ethanol increased and the permeance decreased by increasing the cellulose concentration in the solution prior to coagulation, either by having more cellulose in the starting solution or by evaporating the volatile cosolvent. Drying the membranes after coagulation further increased the dye rejection while decreased the permeance by an order of magnitude. The highest Bromothymol Blue rejection obtained was 94.0% accompanied by a permeance of 0.3 L/h.m2bar with the membrane fabricated from a 20% cellulose - 80% [EMIM]OAc solution and dried after coagulation. The membrane fabricated from a 12% cellulose - 63% [EMIM]OAc - 20% acetone solution and subjected to pre-evaporation before coagulation had 69.8% Bromothymol Blue rejection, with a permeance of 8.4 L/h.m2bar. Overall, the membranes' separation performance was comparable to OSN membranes reported in literature. The rejection for dyes of different charge and polarity was observed to be strongly dependent on solute-membrane interactions, Crystal Violet that did not sorb at all in the membrane was rejected while Brilliant Blue R, which sorbed to a large extent was not. The affinity of dyes to the membrane was attributed to both electrostatic and hydrogen bonding interactions.
5th International Conference on Organic Solvent Nanofiltration (17 - 19 Kasım 2015)

Suggestions

Cellulose membranes for organic solvent nanofiltration
Sukma, F. M.; Çulfaz Emecen, Pınar Zeynep (2018-01-01)
Cellulose membranes were fabricated by phase inversion from solutions of cellulose in 1-ethyl-3-methylimidazolium acetate ([EMIM] OAc) as solvent and acetone as volatile cosolvent. The rejection of Bromothymol Blue ( 624 Da) in ethanol increased and the permeance decreased by increasing the cellulose concentration in the solution prior to coagulation, either by having more cellulose in the starting solution or by evaporating the volatile cosolvent. Drying the membranes after coagulation further increased th...
Cellulose-based membranes via phase inversion using [EMIM]OAc-DMSO mixtures as solvent
Durmaz, Elif Nur; Çulfaz Emecen, Pınar Zeynep (2018-03-16)
Cellulose and cellulose acetate membranes were fabricated by phase inversion from their solutions in 1-ethyl-3-methylimidazolium acetate ([EMIM] OAc), or its mixture with dimethyl sulfoxide (DMSO). Inclusion of DMSO in the solution decreased crystallinity and rejection for both polymers. When cellulose solutions were coagulated in ethanol crystallinity and rejections were lower, and cellulose acetate membranes coagulated in ethanol had a loose, macroporous morphology, which was attributed to the poor nonsol...
Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide
Konca, Kubra; Çulfaz Emecen, Pınar Zeynep (2019-10-01)
Cellulose membranes were fabricated via phase inversion using 1-ethyl-3-methylimidazolium acetate as solvent and acetone as volatile cosolvent. 1,2,3,4-butanetetracarboxylic acid was used to partially crosslink the hydroxyl groups of cellulose, thereby changing mechanical properties of the membranes and the interactions with solvents, ethanol and dimethyl sulfoxide, and solutes. Rejection of dyes of similar size, Bromothymol Blue, Rose Bengal and Crystal Violet were shown to correlate inversely with sorptio...
Solvent recovery from photolithography waste using cellulose ultrafiltration membranes
Savaş Alkan, Aygen; Çulfaz Emecen, Pınar Zeynep; Department of Chemical Engineering (2021-8)
Cellulose flat sheet ultrafiltration membranes were fabricated for the investigation of their separation performance in Organic Solvent Ultrafiltration (OSU) applications and for the solvent recovery from photolithography wastes. Firstly, cellulose acetate membranes were produced and then, these were converted into cellulose membranes via alkaline hydrolysis. The membranes were cast from polymer solutions containing cellulose acetate as polymer with 20-30% concentration range, dimethyl sulfoxide (DMSO) as s...
Membrane fabrication using nanocrystalline cellulose
Volkan, Ecem; Çulfaz Emecen, Pınar Zeynep; Department of Chemical Engineering (2020-10-13)
Cellulose is a biopolymer which is resistant to many solvents due to inter- and intramolecular hydrogen bonds; also, it is hydrophilic and resistant to fouling, which makes cellulose attractive for membrane applications in aqueous and organic media. Nanocrystalline cellulose (NCC) is a promising material due to high surface area, rod-like structure, good dispersion abilities, biodegradability and nanoscale. It is produced by acid hydrolysis using mineral acids to digest amorphous regions of the cellulose ch...
Citation Formats
P. Z. Çulfaz Emecen and D. Elif Nur, “Celulose Membranes for Organic Solvent Nanofiltration,” presented at the 5th International Conference on Organic Solvent Nanofiltration (17 - 19 Kasım 2015), 2015, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/72747.