Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Non-Parametric Algorithm for Discovering Triggering Patterns of Spatio-Temporal Event Types
Date
2017-12-01
Author
Batu, Berna Bakir
Taşkaya Temizel, Tuğba
Duzgun, H. Sebnem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Temporal or spatio-temporal sequential pattern discovery is a well-recognized important problem in many domains like seismology, criminology, and finance. The majority of the current approaches are based on candidate generation which necessitates parameter tuning, namely, definition of a neighborhood, an interest measure, and a threshold value to evaluate candidates. However, their performance is limited as the success of these methods relies heavily on parameter settings. In this paper, we propose an algorithm which uses a nonparametric stochastic de-clustering procedure and a multivariate Hawkes model to define triggering relations within and among the event types and employs the estimated model to extract significant triggering patterns of event types. We tested the proposed method with real and synthetic data sets exhibiting different characteristics. The method gives good results that are comparable with the methods based on candidate generation in the literature.
Subject Keywords
Diggle D
,
Hawkes self-exciting process
,
Multivariate Hawkes model
,
Space-time clustering
,
Spatio-temporal sequences
,
Stochastic declustering
URI
https://hdl.handle.net/11511/31349
Journal
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
DOI
https://doi.org/10.1109/tkde.2017.2754252
Collections
Graduate School of Informatics, Article
Suggestions
OpenMETU
Core
Nonparametric approaches for discovering triggering events from spatio-temporal patterns /
Bakır Batu, Berna; Taşkaya Temizel, Tuğba; Düzgün, H. Şebnem; Department of Information Systems (2014)
Temporal or spatio-temporal sequential pattern discovery is a well-recognized important problem in many domains such as seismology, criminology and finance. The majority of the current approaches are based on candidate generation which necessitates parameter tuning such as definition of a neighborhood, an interest measure and a threshold value to evaluate candidates. However, their performance is limited as the success of these methods relies heavily on parameter settings. In this thesis, two sequential pat...
A feature-based hybrid ARIMA-ANN model for univariate time series forecasting
Buyuksahin, Umit Cavus; Ertekin Bolelli, Şeyda (2020-01-01)
High prediction accuracies at time series modeling and forecasting is of the utmost importance for a variety of application domains. Many methods have been proposed in the literature to improve time series forecasting accuracy. Those which focus on univariate time series forecasting methods use only the values in the prior time steps to predict the next value. In this study in addition to the historical values, it is aimed to increase the forecasting performance by using extra statistical and structural fea...
A temporal neurofuzzy model for rule-based systems
Alpaslan, Ferda Nur; Jain, L (1997-05-23)
This paper reports the development of a temporal neuro-fuzzy model using fuzzy reasoning which is capable of representing the temporal information. The system is implemented as a feedforward multilayer neural network. The learning algorithm is a modification of the backpropagation algorithm. The system is aimed to be used in medical diagnosis systems.
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
A Graph-Based Concept Discovery Method for n-Ary Relations
Abay, Nazmiye Ceren; MUTLU, ALEV; Karagöz, Pınar (2015-09-04)
Concept discovery is a multi-relational data mining task for inducing definitions of a specific relation in terms of other relations in the data set. Such learning tasks usually have to deal with large search spaces and hence have efficiency and scalability issues. In this paper, we present a hybrid approach that combines association rule mining methods and graph-based approaches to cope with these issues. The proposed method inputs the data in relational format, converts it into a graph representation, and...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. B. Batu, T. Taşkaya Temizel, and H. S. Duzgun, “A Non-Parametric Algorithm for Discovering Triggering Patterns of Spatio-Temporal Event Types,”
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, pp. 2629–2642, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31349.