Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On-Line Application of SHEM by Particle Swarm Optimization to Grid-Connected, Three-Phase, Two-Level VSCs with Variable DC Link Voltage
Download
index.pdf
Date
2018-08-01
Author
Guvengir, Umut
ÇADIRCI, IŞIK
Ermiş, Muammer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
122
downloads
Cite This
This paper is devoted to an otablen-line application of the selective harmonic elimination method (SHEM) to three-phase, two-level, grid-connected voltage source converters (VSCs) by particle swarm optimization (PSO). In such systems, active power can be controlled by the phase shift angle, and reactive power by the modulation index, against variations in the direct current (DC) link voltage. Some selected, low-odd-order harmonic components in the line-to-neutral output voltage waveforms are eliminated by calculating the SHEM angle set continuously through the developed PSO algorithm on field-programmable gate array (FPGA)-based computing hardware as the modulation index is varied. The use of powerful computing hardware permits the elimination of all harmonics up to 50th. The cost function of the developed PSO algorithm is formulated by using an optimum number of particles to obtain a global optimum solution with a small fitness value in each half-cycle of the grid voltage and then updating the SHEM angle set at the beginning of the next full-cycle. Since the convergence of the solution to a global minimum point depends upon the use of correct initial values especially for a large number of SHEM angles, a generalized initialization procedure is also described in the paper. Theoretical results are verified initially using hardware co-simulation. They are also tested using a small scale photovoltaic (PV) supply prototype developed specifically for this purpose. It is demonstrated that the 5th, 7th, 11th, 13th, 17th, and 19th sidekick harmonics are eliminated by on-line calculation of seven SHEM angles through the developed PSO algorithm on a moderately powerful XEM6010-LX150, USB-2.0-integrated FPGA module. All control and protection actions and the calculation of SHEM angles are achieved by a single FPGA chip and its peripherals within the FPGA board.
Subject Keywords
Field-programmable gate array
,
Particle swarm optimization
,
Selective harmonic elimination method
,
Voltage source converter
URI
https://hdl.handle.net/11511/31460
Journal
ELECTRONICS
DOI
https://doi.org/10.3390/electronics7080151
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Investigation of tightly coupled arrays for wideband applications
Arda, Kaan; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2020-10)
This thesis aims to provide in depth research on tightly coupled dipole arrays to be used in ultrawideband apertures applications. First, operation principles of tightly coupled dipole arrays are investigated. Starting from the Wheeler’s current sheet aperture concept, some calculations on bandwidth and impedance concepts are conducted. B.A. Munk’s addition to the concept, use of capacitive elements between adjacent dipoles, are introduced. Array unit cell is modeled using equivalent circuit approach,...
Assessment and improvement of elementary force computations for cold forward rod extrusion
Ocal, M; Egemen, N; Tekkaya, AE (2005-06-01)
Two commonly used analytical force computation methods for cold forward rod extrusion are evaluated by means of precise finite element computations. The upperbound model by Avitzur based on the spherical velocity field and the model by Siebel based on a quasi-upper-bound solution are considered. It has been found that the pure deformation forces obtained by summing the ideal force and shear force terms deviate between +25% and -20% from the finite element solutions. Larger deviations, however, occur for the...
VSC-Based D-STATCOM With Selective Harmonic Elimination
Cetin, Alper; Ermiş, Muammer (2009-05-01)
This paper describes the design, implementation, and performance of a medium-size distribution-type static synchronous compensator (D-STATCOM) with the simplest two-level three-leg voltage-source converter (VSC) topology. Reactive-power control is achieved by phase-shift-angle control, and VSC harmonies are eliminated by selective harmonic elimination method (SHEM). VSC has been designed at the highest low-voltage level of 1 kV and connected to a medium-voltage (W) bus through a, low-pass input filter and D...
Selective Harmonic Elimination for Three-Phase Voltage Source Inverters Using Whale Optimizer Algorithm
Nalcaci, Gamze; Ermiş, Muammer (2018-05-05)
Selective Harmonic Elimination (SHE) shows superior harmonic performance at low switching frequencies to eliminate low-order harmonics and this property decreasing losses is a very effective way to reach higher efficiencies in power electronics applications. In this paper, Whale Optimizer Algorithm (WOA) is implemented to decide optimum switching angles for three-phase Voltage Source Inverter (VSI) of eliminating some high order harmonics while providing the required voltage. Besides, Particle Swarm Optimiz...
Adaptive Harmonic Balance Methods, A Comparison
Sert, Onur; Ciğeroğlu, Ender (2016-01-28)
Harmonic balance method (HBM) is one of the most popular and powerful methods, which is used to obtain response of nonlinear vibratory systems in frequency domain. The main idea of the method is to express the response of the system in Fourier series and converting the nonlinear differential equations of motion into a set of nonlinear algebraic equations. System response can be obtained by solving this nonlinear equation set in terms of the unknown Fourier coefficients. The accuracy of the solution is great...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Guvengir, I. ÇADIRCI, and M. Ermiş, “On-Line Application of SHEM by Particle Swarm Optimization to Grid-Connected, Three-Phase, Two-Level VSCs with Variable DC Link Voltage,”
ELECTRONICS
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31460.