Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

2012-07-01
Kilinc, Ersin
BAKIRDERE, Sezgin
AYDIN, FIRAT
Ataman, Osman Yavuz
Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL(-1). %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL(-1) Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Suggestions

In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies
KILINÇ, ERSİN; BAKIRDERE, Sezgin; AYDIN, FIRAT; Ataman, Osman Yavuz (2013-11-01)
Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FMS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS ...
Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry
TİTRETİR DURAN, SERAP; Sik, Ahmet Inanc; ARSLAN, YASİN; Ataman, Osman Yavuz (2012-11-01)
Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS. SQT-FAAS and finally SQT-AT-FMS with the relevan...
SENSITIVITY ENHANCEMENT FOR SLOTTED QUARTZ TUBE FLAME ATOMIC ABSORPTION SPECTROMETRY USING A GAS SCREEN
Gholami, Mehrdad; Farjoud, Mohammad Javad; Sepehri, Masoud; Nazari, Ammar; Gholami, Majid; Behkami, Shima; Ataman, Osman Yavuz (2011-01-01)
Slotted Quartz Tube (SQT) is a simple device that provides a sensitivity enhancement of 2-5 times in Flame Atomic Absorption Spectrometry (FAAS) depending on the element. A Gas Screen-Slotted Quartz Tube (GS-SQT) was designed to further increase sensitivity. For this purpose, two slotted gas chambers were fixed on the left and right sides of a burner head and Ar gas was supplied into these chambers perpendicular to the light path to produce two thin layers of gas screen. It was observed that these Ar screen...
Indium determination using slotted quartz tube-atom trap-flame atomic absorption spectrometry and interference studies
Arslan, Yasin; KENDÜZLER, ERDAL; Ataman, Osman Yavuz (2011-09-30)
Sensitivity enhancement of indium determination by flame atomic absorption spectrometry (FAAS) was achieved: using a slotted quartz tube (SQT-FAAS) and slotted quartz tube atom trap (SQT-AT-FAAS). SQT was used as an atom trap (AT) where the analyte is accumulated in its inner wall prior to re-atomization. The signal is formed after re-atomization of analyte on the trap surface by introduction of 10 pi of isobutyl methyl ketone (IBMK). Sensitivity was improved 400 times using SQT-AT-FAAS system with respect ...
Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap
Demirtas, Ilknur; BAKIRDERE, Sezgin; Ataman, Osman Yavuz (2015-06-01)
Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of mu g/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte i...
Citation Formats
E. Kilinc, S. BAKIRDERE, F. AYDIN, and O. Y. Ataman, “Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse,” SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, pp. 84–88, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31494.