SENSITIVITY ENHANCEMENT FOR SLOTTED QUARTZ TUBE FLAME ATOMIC ABSORPTION SPECTROMETRY USING A GAS SCREEN

2011-01-01
Gholami, Mehrdad
Farjoud, Mohammad Javad
Sepehri, Masoud
Nazari, Ammar
Gholami, Majid
Behkami, Shima
Ataman, Osman Yavuz
Slotted Quartz Tube (SQT) is a simple device that provides a sensitivity enhancement of 2-5 times in Flame Atomic Absorption Spectrometry (FAAS) depending on the element. A Gas Screen-Slotted Quartz Tube (GS-SQT) was designed to further increase sensitivity. For this purpose, two slotted gas chambers were fixed on the left and right sides of a burner head and Ar gas was supplied into these chambers perpendicular to the light path to produce two thin layers of gas screen. It was observed that these Ar screens can move up the flame tails in two ends of SQT. In addition to an increase in sensitivity by the use of SQT, Ar screen resulted in a further improvement in characteristic concentrations, C(0), by a factor of 1.60 for Cd, 2.01 for Co, 1.42 for Cu, 1.94 for Mn, 1.86 for Ni, 1.78 for Pb, 1.62 for Se, and 1.09 for Zn. In addition to the enhancement in sensitivity, gas screen also helps by protecting the spectrometer from the adverse effect of using slotted quartz tube. The system is very simple and low-cost; it can be produced and applied easily.
ANALYTICAL LETTERS

Suggestions

Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry
TİTRETİR DURAN, SERAP; Sik, Ahmet Inanc; ARSLAN, YASİN; Ataman, Osman Yavuz (2012-11-01)
Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS. SQT-FAAS and finally SQT-AT-FMS with the relevan...
Gas-Screen Slotted Quartz Tube Atomic Absorption Spectrometry: A Remedy for Reducing Interference Effects of Calcium and Chromium
Gholami, M.; Yosefi, M. H.; Behkami, S.; Olyai, M. R. Talei Bavil; ARSLAN, YASİN; BAKIRDERE, Sezgin; Ataman, Osman Yavuz (2013-04-13)
A simple device for the reduction of nonspectral interferences in flame atomic absorption spectrometry is proposed. It has been reported that the use of a gas screen (GS) system together with a slotted quartz tube (SQT) enhances the residence time of analyte atoms in measurement zone even more than the SQT alone. This combination causes enhancement of sensitivity and improves the reproducibility of absorbance measurements. In addition, it protects the optical windows of the atomic absorption spectrometer. T...
In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies
KILINÇ, ERSİN; BAKIRDERE, Sezgin; AYDIN, FIRAT; Ataman, Osman Yavuz (2013-11-01)
Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FMS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS ...
Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse
Kilinc, Ersin; BAKIRDERE, Sezgin; AYDIN, FIRAT; Ataman, Osman Yavuz (2012-07-01)
Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found...
Indium determination using slotted quartz tube-atom trap-flame atomic absorption spectrometry and interference studies
Arslan, Yasin; KENDÜZLER, ERDAL; Ataman, Osman Yavuz (2011-09-30)
Sensitivity enhancement of indium determination by flame atomic absorption spectrometry (FAAS) was achieved: using a slotted quartz tube (SQT-FAAS) and slotted quartz tube atom trap (SQT-AT-FAAS). SQT was used as an atom trap (AT) where the analyte is accumulated in its inner wall prior to re-atomization. The signal is formed after re-atomization of analyte on the trap surface by introduction of 10 pi of isobutyl methyl ketone (IBMK). Sensitivity was improved 400 times using SQT-AT-FAAS system with respect ...
Citation Formats
M. Gholami et al., “SENSITIVITY ENHANCEMENT FOR SLOTTED QUARTZ TUBE FLAME ATOMIC ABSORPTION SPECTROMETRY USING A GAS SCREEN,” ANALYTICAL LETTERS, pp. 2513–2520, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31061.