Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ionic conductivity of microporous titanosilicate ETS-10 and ion-exchanged Mn+-ETS-10 (where, Mn+ = Li+, Na+, Mg2+, Zn2+, Ca2+) thin films prepared by secondary growth method
Date
2017-09-15
Author
Galioglu, Sezin
Çam, İbrahim
Akata Kurç, Burcu
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
Impedance spectroscopy was used to investigate the long-range ionic conductivity of the microporous, titanosilicate (Na,K)-ETS-10 and ion-exchanged Mn+-ETS-10 (where, Mn+ = Li+, Na+, Mg2+, Zn2+, Ca2+) thin films prepared by secondary growth method. To figure out the effect of grain boundary on ionic conduction, as-synthesized (Na,K)-ETS-10 films possessing different thicknesses of columnar grain structure (i.e., films prepared via 4h-, 6h-, 8h-, and 10h-growth) were tested. The conductivities of the films with different thicknesses at 723 K were in the range of similar to 10(-3) Omega(-1)cm(-1). However, activation energies of the films decreased from 52.8 to 47.3 kJ mol(-1) (i.e., 0.6 to 0.5 eV) for 4h-(Na,K)-ETS-10 to 10h-(Na,K)-ETS-10 films, respectively. The as-synthesized (Na,K)-ETS-10 film prepared via 6h-growth (denoted as (Na,K)-6h-ETS-10) and monovalent cation-exchanged samples Li- and Na-6h-ETS-10 films exhibit conductivities of 2.1 x 10(-3), 2.4 x 10(-4), and 2.7 x 10(-4) Omega(-1)cm(-1), respectively, at 723 K and activation energies of 50.1, 55.5, and 55.4 kJ mol(-1), respectively, in the temperature range 573-773 K. Divalent cation-exchanged samples Mg-, Zn- and Ca-6h-ETS-10 films exhibit conductivities of 2.3 x 10(-4), 2.9 x 10(-4), and 8.8 x 10(-5) Omega(-1)cm(-1), respectively, at 723 K and activation energies of 62.5, 57.9, and 65.2 kJ mol(-1), respectively, in the temperature range 573-773 K. The data shown here indicate that ionic conductivity of intergrown (Na,K)-ETS-10 films prepared by secondary growth method were significantly enhanced with respect to pressed pellets of powder zeolite and zeo-type materials which imply the importance of engineering the microstructure of the zeolite film to improve the conductivity of zeolites and zeo-type materials.
Subject Keywords
ETS-10
,
Titanosilicates
,
Secondary growth
,
Conductivity
,
Impedance spectroscopy
URI
https://hdl.handle.net/11511/31652
Journal
MICROPOROUS AND MESOPOROUS MATERIALS
DOI
https://doi.org/10.1016/j.micromeso.2017.05.018
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Electrochemical Behavior of Hydrazine Borane in Methanol Solution
Ozhava, Derya; Önal, Ahmet Muhtar; Özkar, Saim (The Electrochemical Society, 2014-01-01)
Electrochemical behavior of hydrazine borane (HB) was investigated on gold electrode in 0.5 M LiClO4 solution in methanol using cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry. Two irreversible peaks at 164 and 530 mV are attributed to direct electro-oxidation of HB on gold electrode in methanol. Both EIS results and CV data at different scan rates indicate a diffusion controlled electron transfer reaction. Furthermore, the Tafel slope (b = 0.191 V) and charge transfer...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Electrochemical synthesis of crowned conducting polymers : nature of radical cations in polymerization and mechanism of conductivity
Cihaner, Atilla; Önal, Ahmet Muhtar; Department of Chemistry (2004)
Poly(dibenzo-18-crown-6) (Poly(DB18C6)) was synthesized by electrochemical oxidation of dibenzo-18-crown-6 (DB18C6) using a mixture of acetonitrile and dichloromethane as solvent and tetrabutylammonium tetrafluoroborate (TBABF4) or tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. The anodic polymerization of DB18C6 was investigated using in-situ ESR and in-situ UV-VIS spectroscopic techniques. Spectroelectrochemical (SPEL) properties and thermal analysis of the resulting polymers h...
Raman Spectroscopy Investigation of Nano Hydroxyapatite Doped with Yttrium and Fluoride Ions
Yilmaz, Bengi; Evis, Zafer (Informa UK Limited, 2014-01-02)
In this study, nano hydroxyapatite doped with yttrium (2.5, 5, and 7.5mol%) and fluoride (2.5mol%) ions were synthesized by precipitation method and sintered at 900 degrees C, 1100 degrees C, and 1300 degrees C. Raman spectroscopy was applied to track the structural modifications in pure and doped hydroxyapatites. The results showed that the main characteristic band of pure hydroxyapatite at 963cm(-1) was not affected significantly by ion doping but exhibited higher intensity with increasing sintering tempe...
Electrochemical and chemical oxidation of K(C2H5OCS2),[Ni(C2H5OCS2)(2)] and [N(C2H5)(4)][Ni(C2H5OCS2)(3)]
Dag, O; Önal, Ahmet Muhtar; Isci, H (1996-06-26)
Electrochemical and chemical oxidation of (Et-Xan(-)), [Ni(Et-Xan)(2)] and [Ni(Et-Xan)(3)](-) (Et-Xan(-) = C2H5OCS2- have been studied by Cyclic Voltammetry and in situ UV-Vis spectroscopy in acetonitrile at room temperature. Cyclic Voltammograms (CV) of Et-Xan(-) and Ni(Et-Xan)(2) display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to Ag/Ag+(0.10 M) electrode. However, CV of Ni(Et-Xan)(3)(-) displays one reversible (-0.15 V) and two irreversible (0.35, 0.80...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Galioglu, İ. Çam, and B. Akata Kurç, “Ionic conductivity of microporous titanosilicate ETS-10 and ion-exchanged Mn+-ETS-10 (where, Mn+ = Li+, Na+, Mg2+, Zn2+, Ca2+) thin films prepared by secondary growth method,”
MICROPOROUS AND MESOPOROUS MATERIALS
, pp. 177–185, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31652.