Ionic conductivity of microporous titanosilicate ETS-10 and ion-exchanged Mn+-ETS-10 (where, Mn+ = Li+, Na+, Mg2+, Zn2+, Ca2+) thin films prepared by secondary growth method

2017-09-15
Impedance spectroscopy was used to investigate the long-range ionic conductivity of the microporous, titanosilicate (Na,K)-ETS-10 and ion-exchanged Mn+-ETS-10 (where, Mn+ = Li+, Na+, Mg2+, Zn2+, Ca2+) thin films prepared by secondary growth method. To figure out the effect of grain boundary on ionic conduction, as-synthesized (Na,K)-ETS-10 films possessing different thicknesses of columnar grain structure (i.e., films prepared via 4h-, 6h-, 8h-, and 10h-growth) were tested. The conductivities of the films with different thicknesses at 723 K were in the range of similar to 10(-3) Omega(-1)cm(-1). However, activation energies of the films decreased from 52.8 to 47.3 kJ mol(-1) (i.e., 0.6 to 0.5 eV) for 4h-(Na,K)-ETS-10 to 10h-(Na,K)-ETS-10 films, respectively. The as-synthesized (Na,K)-ETS-10 film prepared via 6h-growth (denoted as (Na,K)-6h-ETS-10) and monovalent cation-exchanged samples Li- and Na-6h-ETS-10 films exhibit conductivities of 2.1 x 10(-3), 2.4 x 10(-4), and 2.7 x 10(-4) Omega(-1)cm(-1), respectively, at 723 K and activation energies of 50.1, 55.5, and 55.4 kJ mol(-1), respectively, in the temperature range 573-773 K. Divalent cation-exchanged samples Mg-, Zn- and Ca-6h-ETS-10 films exhibit conductivities of 2.3 x 10(-4), 2.9 x 10(-4), and 8.8 x 10(-5) Omega(-1)cm(-1), respectively, at 723 K and activation energies of 62.5, 57.9, and 65.2 kJ mol(-1), respectively, in the temperature range 573-773 K. The data shown here indicate that ionic conductivity of intergrown (Na,K)-ETS-10 films prepared by secondary growth method were significantly enhanced with respect to pressed pellets of powder zeolite and zeo-type materials which imply the importance of engineering the microstructure of the zeolite film to improve the conductivity of zeolites and zeo-type materials.
MICROPOROUS AND MESOPOROUS MATERIALS

Suggestions

Electrochemical Behavior of Hydrazine Borane in Methanol Solution
Ozhava, Derya; Önal, Ahmet Muhtar; Özkar, Saim (The Electrochemical Society, 2014-01-01)
Electrochemical behavior of hydrazine borane (HB) was investigated on gold electrode in 0.5 M LiClO4 solution in methanol using cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry. Two irreversible peaks at 164 and 530 mV are attributed to direct electro-oxidation of HB on gold electrode in methanol. Both EIS results and CV data at different scan rates indicate a diffusion controlled electron transfer reaction. Furthermore, the Tafel slope (b = 0.191 V) and charge transfer...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Controlled assemble and microfabrication of zeolite particles on SiO2 substrates for potential biosensor applications
Öztürk, Semra; Turan, Raşit; Akata Kurç, Burcu (2008-12-04)
Zeolite nanoparticles were organized into functional entities on SiO2 substrates and microfabrication technique was tested to form patterns of zeolite nanoparticles on SiO2 using the electron beam lithography (EBL). The effect of different techniques for efficient zeolite assembly on the SiO2 substrates was investigated. For this purpose, three different assembly techniques were tested. The first two methods are spin-coating (SC) and ultrasound aided strong agitation (US) methods, which were tested using ba...
Electrochemical synthesis of crowned conducting polymers : nature of radical cations in polymerization and mechanism of conductivity
Cihaner, Atilla; Önal, Ahmet Muhtar; Department of Chemistry (2004)
Poly(dibenzo-18-crown-6) (Poly(DB18C6)) was synthesized by electrochemical oxidation of dibenzo-18-crown-6 (DB18C6) using a mixture of acetonitrile and dichloromethane as solvent and tetrabutylammonium tetrafluoroborate (TBABF4) or tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. The anodic polymerization of DB18C6 was investigated using in-situ ESR and in-situ UV-VIS spectroscopic techniques. Spectroelectrochemical (SPEL) properties and thermal analysis of the resulting polymers h...
Near-infrared photoluminescence and thermally stimulated current in Cu3Ga5Se9 layered crystals: A comparative study
Hasanlı, Nızamı (2016-07-01)
Near-infrared photoluminescence (PL) and thermally stimulated current (TSC) spectra of Cu3Ga5Se9 layered crystals grown by Bridgman method have been studied in the photon energy region of 1.35-1.46 eV and the temperature range of 15-115 K (PL) and 10-170 K (TSC). An infrared PL band centered at 1.42 eV was revealed at T = 15 K. Radiative transitions from shallow donor level placed at 20 meV to moderately deep acceptor level at 310 meV were suggested to be the reason of the observed PL band. TSC curve of Cu3...
Citation Formats
S. Galioglu, İ. Çam, and B. Akata Kurç, “Ionic conductivity of microporous titanosilicate ETS-10 and ion-exchanged Mn+-ETS-10 (where, Mn+ = Li+, Na+, Mg2+, Zn2+, Ca2+) thin films prepared by secondary growth method,” MICROPOROUS AND MESOPOROUS MATERIALS, pp. 177–185, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31652.