Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrochemical and chemical oxidation of K(C2H5OCS2),[Ni(C2H5OCS2)(2)] and [N(C2H5)(4)][Ni(C2H5OCS2)(3)]
Date
1996-06-26
Author
Dag, O
Önal, Ahmet Muhtar
Isci, H
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
229
views
0
downloads
Cite This
Electrochemical and chemical oxidation of (Et-Xan(-)), [Ni(Et-Xan)(2)] and [Ni(Et-Xan)(3)](-) (Et-Xan(-) = C2H5OCS2- have been studied by Cyclic Voltammetry and in situ UV-Vis spectroscopy in acetonitrile at room temperature. Cyclic Voltammograms (CV) of Et-Xan(-) and Ni(Et-Xan)(2) display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to Ag/Ag+(0.10 M) electrode. However, CV of Ni(Et-Xan)(3)(-) displays one reversible (-0.15 V) and two irreversible (0.35, 0.80 V) oxidation peaks, respectively, referenced to Ag/Ag+ electrode. The products of constant potential electrolysis at the first oxidation peak potentials of Et-Xan(-) and [Ni(Et-Xan)(2)] are the dimer of the oxidized ligand, (Et-Xan)(2) and Ni-(sol(2+)); and that of Ni(Et-Xan)(3)](-) are (Et-Xan)(2) and [Ni(Et-Xan)(2)]. Chemical oxidation of Et-Xan(-) and [Ni(Et-Xan)(3)](-) with iodine to (Et-Xan)(2) and (Et-Xan)(2)/[Ni(Et-Xan)(2)], were also achieved. The oxidized ligand in the dimer form can be reduced to Et-Xan(-) with CN- in solution. Our data do not support the formation of Ni(III) species at any oxidation stage.
Subject Keywords
Cyclic voltammograms
,
Oxidation peak
,
Electrochemical oxidation
,
Spectral change
,
Chemical oxidation
URI
https://hdl.handle.net/11511/54397
Collections
Department of Chemistry, Conference / Seminar
Suggestions
OpenMETU
Core
Spectroelectrochemistry of potassium ethylxanthate, bis(ethylxanthato)nickel(II) and tetraethylammonium tris(ethylxanthato)nickelate(II)
Dag, O; Yaman, SO; Önal, Ahmet Muhtar; Isci, H (2001-10-07)
Electrochemical and chemical oxidation of S2COEt-, Ni(S2COEt)(2), and [Ni(S2COEt)(3)](-) have been studied by CV and in situ UV-VIS spectroscopy in acetonitrile. Cyclic voltammograms of S2COEt- and Ni(S2COEt)(2) display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to an Ag/Ag+ (0.10 M) electrode. However, the cyclic voltammogram of [Ni(S2COEt)(3)](-) displays one reversible (- 0.15 V) and two irreversible (0.35, 0.80 V) oxidation peaks, referenced to an Ag/Ag...
Regioselectivity in the Ene reaction of singlet oxygen with cyclic alkenes and application of Ene reaction to stereoselective synthesis of carbaheptopyranose derivatives
Doğan, Şengül Dilem; Balcı, Metin; Department of Chemistry (2010)
In the first part of this thesis is related to the regioselectivity in ene reaction of singlet oxygen with cyclic alkenes. The photooxygenation of 1-methyl-, 2,3-dimethyl-, 1,4-dimethylcyclohexa-1,4-dienes, 1,2,3,4,5,8-hexahydronaphthalene (16) and 2,3,4,7-tetrahydro-1H-indene (17) which are readily available through Birch reduction, yielded the ene products. The formed endocyclic dienes were trapped by the addition of singlet oxygen to give corresponding bicyclic endoperoxy-hydroperoxides. In the case of 1...
Electrochemistry of nickel(II) complexes with N,N'-bis(3,5-di-tert-butylsalicylidene)polymethylenediamines
Ozalp-Yaman, S; Kasumov, VT; Önal, Ahmet Muhtar (Elsevier BV, 2005-10-03)
The electrochemical oxidation of several N,N'-polymethylenebis(3,5-di-tert- butylsalicylaldiminato)nickel(II) complexes, Ni(L-x), has been studied by cyclic voltammetry and in situ UV-Vis spectroscopy in DMF Cyclic voltammograms of Ni(L-x) (x = 1-4) complexes displayed two-step oxidation processes under nitrogen gas atmosphere. The first oxidation peak potentials of all the Ni(II) complexes corresponds to the reversible one-electron oxidation process of the metal center, yielding Ni(III) species. EPR spectr...
Catalytic oxidation of nitrogen containing compounds for nitrogen determination
Karakaş, Gürkan (2019-02-15)
The high temperature catalytic oxidation (HTCO) performance of Al2O3 supported Pt, Cu, Cu-Ce and Fe catalysts were systematically studied with a perspective of selective oxidation of nitrogenous compounds to nitric oxide for quantitative determination of bound nitrogen. The catalyst samples were prepared via impregnation and characterized by XRD and BET. In addition, temperature programmed reaction experiments with acetonitrile and oxygen were conducted to evaluate the catalytic activity and selectivity tow...
Electrochemical behaviour and electrochemical polymerization of fluoro-substituted anilines
Cihaner, A; Önal, Ahmet Muhtar (2002-08-01)
The electrochemical behaviour of three fluoro-substituted aniline monomers, 2-fluoroaniline (2FAN), 3-fluoroaniline (3FAN) and 4-fluoroaniline (4FAN), was investigated in aqueous acidic and organic media by means of cyclic voltammetry (CV) studies. Constant potential electrolysis (CPE) of the monomers in acetonitrile-water mixture (1: 1 by volume) using NaClO4 as supporting electrolyte yielded soluble polymers. The mechanism of electrochemical polymerization was investigated using in situ electron spin reso...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Dag, A. M. Önal, and H. Isci, “Electrochemical and chemical oxidation of K(C2H5OCS2),[Ni(C2H5OCS2)(2)] and [N(C2H5)(4)][Ni(C2H5OCS2)(3)],” 1996, vol. 26, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54397.