Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characteristics of free overfall for supercritical flows
Date
2007-02-01
Author
Tokyay, Nuray
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
The characteristics of supercritical flow at a vertical drop in a rectangular channel are studied experimentally to obtain information that would be valuable to designers of hydraulic structures. The relationship between the ratio of brink depth to the depth of upstrearn supercritical flow (i.e., end-depth ratio) and the Froude number is determined. Downstream from the vertical drop, the physical characteristics of the failing jet are examined, such as the height of the standing water behind the jet, the maximum horizontal distance of the jet hitting the floor downstream, the height and length of the splashing water, and the horizontal distance where the downstream flow gains uniformity. The energy loss between the drop and stable downstream flow is also studied.
Subject Keywords
Supercritical flow
,
Brink depth
,
Free fall
URI
https://hdl.handle.net/11511/31828
Journal
CANADIAN JOURNAL OF CIVIL ENGINEERING
DOI
https://doi.org/10.1139/l06-114
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Incompressible flow simulations using least squares spectral element method on adaptively refined triangular grids
Akdağ, Osman; Sert, Cüneyt; Department of Mechanical Engineering (2012)
The main purpose of this study is to develop a flow solver that employs triangular grids to solve two-dimensional, viscous, laminar, steady, incompressible flows. The flow solver is based on Least Squares Spectral Element Method (LSSEM). It has p-type adaptive mesh refinement/coarsening capability and supports p-type nonconforming element interfaces. To validate the developed flow solver several benchmark problems are studied and successful results are obtained. The performances of two different triangular ...
Determination of critical submergence depth at horizontal intakes under asymmetric flow conditions
Göğüş, Mustafa; Köken, Mete; Haspolat, Emre (2015-07-03)
The purpose of the present study is to investigate the hydraulic conditions of air-entraining vortices under asymmetrical flow conditions and derive a general expression to determine the critical submergence depth required for the formation of these vortices at horizontal intake pipes. A series of experiments were conducted in a model composed of a concrete reservoir and intake pipe which was mounted horizontally to the reservoir. Three pipes of different diameters were tested with adjustable plexiglass sid...
Consistent matrices for steel framed structures with semi-rigid connections accounting for shear deformation and rotary inertia effects
ÖZEL, HALİL FIRAT; Sarıtaş, Afşin; Tasbahji, Tayseer (2017-04-15)
Estimation of vibration characteristics and thus the seismic loads acted on steel framed structures are influenced by the presence of semi-rigid connections and accurate modeling of shear deformations and rotary inertia effects. This paper presents a finite element model that takes into account all these effects in order to calculate consistent stiffness and mass matrices. The formulation of the element utilizes three fields Hu-Washizu-Barr principle, where the need for displacement shape function approxima...
Physics Based Formulation of a Cohesive Zone Model for Ductile Fracture
Yalçınkaya, Tuncay (2015-07-01)
This paper addresses a physics based derivation of mode-I and mode-II traction separation relations in the context of cohesive zone modeling of ductile fracture of metallic materials. The formulation is based on the growth of an array of pores idealized as cylinders which are considered as therepresentative volume elements. An upper bound solution is applied for the deformation of the representative volume element and different traction-separation relations are obtained through different assumptions.
Surface energy and excess charge in (1x2)-reconstructed rutile TiO2(110) from DFT plus U calculations
Unal, Hatice; METE, ERSEN; Ellialtıoğlu, Süleyman Şinasi (2011-09-09)
Physically reasonable electronic structures of reconstructed rutile TiO2(110)-(1x2) surfaces were studied using density functional theory (DFT) supplemented with Hubbard U on-site Coulomb repulsion acting on the d electrons, the so called DFT + U approach. Two leading reconstruction models proposed by Onishi and Iwasawa [Surf. Sci. Lett. 313, 783 (1994)] and Park and coworkers [Phys. Rev. B 75, 245415 (2007)] were compared in terms of their thermodynamic stabilities.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Tokyay, “Characteristics of free overfall for supercritical flows,”
CANADIAN JOURNAL OF CIVIL ENGINEERING
, pp. 162–169, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31828.