Distributed Optimal Control of Diffusion Convection Reaction Equations Using Discontinuous Galerkin Methods

2011-09-09
Yücel, Hamdullah
HEİKENSCHLOSS, Matthias
Karasözen, Bülent
We discuss the symmetric interior penalty Galerkin (SIPG) method, the nonsymmetric interior penalty Galerkin (NIPG) method, and the incomplete interior penalty Galerkin (IIPG) method for the discretization of optimal control problems governed by linear diffusion-convection-reaction equations. For the SIPG discretization the discretize-then-optimize (DO) and the optimize-then-discretize (OD) approach lead to the same discrete systems and in both approaches the observed L 2 convergence for states and controls is O(hk+1) , where k is the degree of polynomials used. The situation is different for NIPG and IIPG, where the the DO and the OD approach lead to different discrete systems. For example, when standard penalization is used, the L 2 error in the controls is only O(h) independent of k. However, if superpenalization is used, the lack of adjoint consistency is reduced and the observed convergence for NIPG and IIPG is essentially equal to that of the SIPG method in the DO and OD approach.
Citation Formats
H. Yücel, M. HEİKENSCHLOSS, and B. Karasözen, “Distributed Optimal Control of Diffusion Convection Reaction Equations Using Discontinuous Galerkin Methods,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31844.