Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimation of Noise Model Parameters for Images Taken by a Full-frame Hyperspectral Camera
Date
2015-09-23
Author
DEMİRKESEN, Can
Leloğlu, Uğur Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
34
views
0
downloads
Cite This
Noise has to be taken into account in the algorithms of classification, target detection and anomaly detection. Recent studies indicate that noise estimation is also crucial in subspace identification of Hyper Spectral Images (his). Several techniques were proposed for noise estimation including: multiple linear regression based techniques, spectral unmixing and remixing etc. The noise in HSI is widely accepted to be a spatially stationary random process. But the variance of the noise varies from one wavelength to another. Two types of noise are considered: the first one is the circuitry noise (thermal noise) which is signal independent. The second one is the photonic noise (shot noise) which is signal dependent. The latter is considered to be the dominant one. A reliable way to accurately estimate the noise requires the identification of a large uniform region in the image. To this end, we propose a region growing technique. At the end of this process, a certain number of regions with different sizes and uniformities are obtained. The next step consists of identifying the most uniform region having the largest area. Once the most uniform and largest region of the scene is identified the next step is to apply an ideal low pass filter to this region. This yields an estimate of the noise-free data, hence the noise itself by calculating the difference. It is also possible to apply the well-known scatter plot technique. Experiments suggest that the proposed scheme produces comparable results to its competitors. A major advantage of the technique is the automated identification of an homogenous region.
Subject Keywords
Hyperspectral
,
Noise estimation
,
Region growing
,
Radiometric calibration
URI
https://hdl.handle.net/11511/31859
DOI
https://doi.org/10.1117/12.2195057
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Rigorous Analysis of Deformed Nanowires Using the Multilevel Fast Multipole Algorithm
Karaosmanoglu, Bariscan; Yilmaz, Akif; Ergül, Özgür Salih (2015-05-17)
We present accurate full-wave analysis of deformed nanowires using a rigorous simulation environment based on the multilevel fast multipole algorithm. Single nanowires as well as their arrays are deformed randomly in order to understand the effects of deformations to scattering characteristics of these structures. Results of hundreds of simulations are considered for statistically meaningful analysis of deformation effects. We show that deformations significantly enhance the forward-scattering abilities of ...
Computation of radar cross sections of complex targets by shooting and bouncing ray method
Özgün, Salim; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2009)
In this study, a MATLAB® code based on the Shooting and Bouncing Ray (SBR) algorithm is developed to compute the Radar Cross Section (RCS) of complex targets. SBR is based on ray tracing and combine Geometric Optics (GO) and Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The presented algorithm is examined in two parts; the first part addresses a new aperture selection strategy named as “conformal aperture”, which is proposed and formulated to increase the performance of the cod...
Synthesis of Controllable ptSTL Formulas
Saglam, Irmak; Aydın Göl, Ebru (2020-01-01)
In this work, we develop an approach to anomaly detection and prevention problem using Signal Temporal Logic (STL). This approach consists of two steps: detection of the causes of the anomalities as STL formulas and prevention of the satisfaction of the formula via controller synthesis. This work focuses on the first step and proposes a formula template such that any controllable cause can be represented in this template. An efficient algorithm to synthesize formulas in this template is presented. Finally, ...
Neural network method for direction of arrival estimation with uniform cylindrical microstrip patch array
Caylar, S.; Dural, G.; Leblebicioğlu, Mehmet Kemal (Institution of Engineering and Technology (IET), 2010-02-01)
In this study, a new neural network algorithm is proposed for real-time multiple source tracking problem with cylindrical patch antenna array based on a previously reported Modified Neural Multiple Source Tracking (MN-MUST) algorithm. The proposed algorithm, namely cylindrical microstrip patch array modified neural multiple source tracking (CMN-MUST) algorithm implements MN-MUST algorithm on a cylindrical microstrip patch array structure. CMN-MUST algorithm uses the advantage of directive pattern of microst...
Evaluation of Randomness Test Results for Short Sequences
Sulak, Fatih; Doğanaksoy, Ali; Ege, Baris; Koçak, Onur Ozan (2010-09-17)
Randomness testing of cryptographic algorithms are of crucial importance to both designer and the attacker. When block ciphers and hash functions are considered, the sequences subject to randomness testing are of at most 512-bit length, "short sequences". As it is widely known, NIST has a statistical test suite to analyze the randomness properties of sequences and generators. However, some tests in this suite can not be applied to short sequences and most of the remaining ones do not produce reliable test v...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. DEMİRKESEN and U. M. Leloğlu, “Estimation of Noise Model Parameters for Images Taken by a Full-frame Hyperspectral Camera,” 2015, vol. 9643, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31859.