Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pyrolysis of BF4- doped polypyrrole by direct insertion probe pyrolysis mass spectrometry
Date
2001-01-01
Author
Uyar, Tamer
Toppare, Levent Kamil
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
168
views
0
downloads
Cite This
A systematic structural and thermal characterization of conducting polypyrrole doped with BF4- was performed using a direct insertion probe pyrolysis mass spectrometry technique. The effect of dopant concentration on the structure and stability was investigated not only by analyzing samples with different doping levels, but also analyzing the dedoped polypyrrole sample. To get a better understanding, the changes in structure and stability upon overoxidation and thermal aging were also studied. During pyrolysis, mainly three thermal decomposition stages were observed. The first stage below 100 degreesC was associated with evolution of adsorbed water, the solvent acetonitrile, tetrabutylammonium ion, and unreacted pyrrole. The dopant peaks such as BF3. BF2, and BF were recorded at moderate temperatures around 250 degreesC, whereas, polypyrrole peaks showed up in the last stage above which is 300 degreesC. It has been observed that at high BF4- concentrations aromatic structure was enhanced contrary to what was observed for p-toluene sulfonic acid doped polypyrrole in our previous studies.
Subject Keywords
Polypyrrole
,
BF4- as dopant
,
Thermal degradation
,
Mass spectrometry
URI
https://hdl.handle.net/11511/31894
Journal
Journal of Macromolecular Science - Pure and Applied Chemistry
DOI
https://doi.org/10.1081/ma-100107134
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Spectroscopic investigation of oxidation of p-toluene sulfonic acid doped polypyrrole
Uyar, Tamer; Toppare, Levent Kamil; Hacaloğlu, Jale (2001-09-04)
Oxidative degradation of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole, PTS-PPY was studied by the application of evolved gas analysis using IR spectroscopy and direct insertion probe pyrolysis mass spectrometry techniques. It has been observed that PPY films prepared in aqueous media contained high concentration of oxygenated species even if the synthesis potential was kept low. The extent of overoxidation associated to ketone formation increased by increasing the applied potentia...
Pyrolysis mass spectrometry analysis of BF4 - doped polythiophene
Gozet, Tuba; Hacaloğlu, Jale; Önal, Ahmet Muhtar (2004-06-01)
Pyrolysis of electrochemically prepared BF4- doped polythiophene (PTh) by direct insertion probe and Currie point pyrolysis gas chromatography mass spectrometry techniques indicated that thermal decomposition of PTh occurs in two steps. In accordance with literature results, the first step is assigned to the loss of the dopant, and the second step to the degradation of the polymer backbone producing segments of various conjugation lengths. At elevated temperatures, detection of products such as H2S and C2H2...
Polylactide/organically modified montmorillonite composites; effects of organic modifier on thermal characteristics
Ozdemir, Esra; Öztürk, Yurdagül; Hacaloğlu, Jale (2016-12-01)
The effects of interspace distance and the possible chemical interactions between PLA and the organic modifier of montmorillonites, Cloisite 15A, 20A and 30B on thermal degradation of PLA in the absence and presence of water vapor were investigated by direct pyrolysis mass spectrometry, (DP-MS) in addition to XRD, TEM, DSC, TGA analyses. The DP-MS results clearly showed that the way in which the polymer was incorporated into the nanocomposite strongly depends on the mixing technique, the interspacing betwee...
Characterization of polyaniline via pyrolysis mass spectrometry
Hacaloğlu, Jale; Kücükyavuz, Zühal (2008-04-05)
In this work, direct insertion probe pyrolysis mass spectrometry technique was applied to investigate the thermal and the structural characteristics of electrochemically prepared HCl and HNO3-doped polyaniline (PANI) films. It has been determined that the thermal degradation of both samples showed three main thermal degradation stages. The first stage around 50-60 degrees C was associated with evolution of solvent and low-molecular-weight species adsorbed on the polymer, the second stage just above 150 degr...
Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Uyar, L. K. Toppare, and J. Hacaloğlu, “Pyrolysis of BF4- doped polypyrrole by direct insertion probe pyrolysis mass spectrometry,”
Journal of Macromolecular Science - Pure and Applied Chemistry
, pp. 1141–1150, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31894.