Guideline for Optical Optimization of Planar Perovskite Solar Cells

Koc, Mehmet
Soltanpoor, Wiria
Bektas, Gence
Bolink, Henk J.
Yerci, Selçuk
Organometallic halide perovskite solar cells have emerged as a versatile photovoltaic technology with soaring efficiencies. Planar configuration, in particular, has been a structure of choice thanks to its lower temperature processing, compatibility with tandem solar cells, and potential in commercialization. Despite all the breakthroughs in the field, the optical mechanisms leading to highly efficient perovskite solar cells lack profound insight. In this paper, a comprehensive guideline is introduced involving semianalytical equations for thickness optimization of the front and rear transport layers, perovskite, and transparent conductive oxides to improve the antireflection and light trapping properties, and therefore to maximize the photocurrent of perovskite solar cells. It is shown that a photocurrent enhancement above 2 mA cm(-2) can be achieved by altering-reducing or increasing-the thicknesses of the layers constituting a CH3NH3PbI3 (MAPI) type perovskite solar cell. The proposed guideline is tested against experiments as well as previously published experimental and simulation results for MAPI. Additionally, the provided guideline for various types of perovskites can be extended to other direct bandgap absorber-based solar cells in superstrate configuration.


Fabrication and characterization of PEDOT:PSS hole transport layers for silicon solar cells
Türkay, Deniz; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Heterojunction silicon solar cells have gained considerable interest in recent years with the demonstration of record-high device performances. However, these devices are typically based on inorganic layers fabricated at high temperatures under vacuum environment, using toxic precursors. The low temperature budget, non-toxic chemical contents, and wide range of adjustability in physical and electrical properties make poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) a promising candidate a...
Three dimensional crystalline silicon solar cells
Baytemir, Gülsen; Turan, Raşit; Department of Physics (2018)
Three-dimensional crystalline silicon solar cells have been attracting attention with its remarkable electrical and optical performance. In this geometry, nano/micropillars allow minority carrier collection in the radial direction and shorten the path length of the photogenerated carriers. Furthermore, with appropriate geometry of the pillars the solar cell efficiency is enhanced due to the reduced surface reflectance and increased light harvesting. Throughout this study, metal assisted etching (MAE), a top...
Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells
Akınoğlu, Bülent Gültekin; Badescu, Viorel (2021-08-01)
Solar cells have over 50-years of development history; many different devices and technologies are studied over this time span, and interestingly it is still a hot research topic. Although the physical mechanisms involved in photovoltaic processes are rather fundamental, the characterization and classification of the research pathways seem complicated and can even lead to misleading argumentation. Various photovoltaic devices are classified as first, second- and third- generation based on the developments f...
Salimi, Yasaman; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2022-5-09)
P-type solar cells currently hold most of the market share in industrial solar cell fabrication statistics. NREL's highest efficiency record for p-type crystalline perc cells is 22.8%. However, there is an ever-increasing interest in n-type wafers due to the many advantages they have against p-type cells. According to the ITRPV's estimation, the n-type cell structures will be taking half the industry's share by 2031. Compared to p-type cells, n-type cells yield better efficiency and lifetime values and are ...
Modification of TiO2 and NiO charge selective mesoporous layers using excessive Y and Li additions for carbon based perovskite solar cells
Icli, Kerem Cagatay; Özenbaş, Ahmet Macit (2021-09-15)
Carbon based perovskite solar cells are rapidly emerging as promising photovoltaic devices, combining low cost production and prolonged device operation, due to the exclusion of polymeric conductors and integration of highly durable metal oxide charge selective layers. Modification of metal oxide mesoporous layers via element additions and enhancement of electrical conductivity is a major strategy for reduced internal resistances inside the cell. This work investigates the effect of excessive Y and Li addit...
Citation Formats
M. Koc, W. Soltanpoor, G. Bektas, H. J. Bolink, and S. Yerci, “Guideline for Optical Optimization of Planar Perovskite Solar Cells,” ADVANCED OPTICAL MATERIALS, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: