Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Efficient subquadratic space complexity binary polynomial multipliers based on block recombination
Download
index.pdf
Date
2014-09-01
Author
Cenk, Murat
Negre, Christophe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
Some applications like cryptography involve a large number of multiplications of binary polynomial. In this paper we consider two, three and four-way methods for parallel implementation of binary polynomial multiplication. We propose optimized three and four-way split formulas which reduce the space and time complexity of the best known methods. Moreover, we present a block recombination method which provides some further reduction in the space complexity of the considered two, three and four-way split multipliers.
Subject Keywords
Block recombination
,
Binary field
,
Subquadratic space complexity
,
Two-way, three-way and four-way split formula
,
Binary polynomial multiplication
URI
https://hdl.handle.net/11511/31923
Journal
IEEE Transactions on Computers
DOI
https://doi.org/10.1109/tc.2013.105
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
HYBRID ANALYSIS OF TMVP FOR MODULAR POLYNOMIAL MULTIPLICATION IN CRYPTOGRAPHY
Efe, Giray; Cenk, Murat; Department of Cryptography (2022-3-07)
Polynomial multiplication on the quotient ring Z[x]/<x^n+-1> is one of the most fundamental, general-purpose operations frequently used in cryptographic algorithms. Therefore, a possible improvement over a multiplication algorithm directly affects the performance of algorithms used in a cryptographic application. Well-known multiplication algorithms such as Schoolbook, Karatsuba, and Toom-Cook are dominant choices against NTT in small and ordinary input sizes. On the other hand, how these approaches are imp...
Faster characteristic three polynomial multiplication and its application to NTRU Prime decapsulation
Yeniaras, Esra; Cenk, Murat (2022-01-01)
Efficient computation of polynomial multiplication over characteristic three fields is required for post-quantum cryptographic applications which gain importance upon the recent advances in quantum computers. In this paper, we propose three new polynomial multiplication algorithms over F-3 and show that they are more efficient than the current state-of-the-art algorithms. We first examine through the well-known multiplication algorithms in F-3[x] including the Karatsuba 2-way and 3-way split formulas along ...
Modular exponentiation methods in cryptography
Yünüak, Hasan Bartu; Cenk, Murat; Department of Cryptography (2017)
Modular exponentiation has an important role in many cryptographic algorithms. These exponentiation methods differ in the bases used and their representations, the repeating aspect, and for which algorithms they are used for: fixed or variable base. Our research aims to compare the efficiencies and implementation timings for some selected algorithms. Also, we look at the options for using a dedicated cubing algorithm, and compare them with the current algorithms.
NEW EFFICIENT CHARACTERISTIC THREE POLYNOMIAL MULTIPLICATION ALGORITHMS AND THEIR APPLICATIONS TO NTRU PRIME
Yeniaras, Esra; Cenk, Murat; Department of Cryptography (2022-1-21)
Some of the post-quantum cryptographic protocols require polynomial multiplication in characteristic three fields, thus the efficiency of such multiplication algorithms gain more importance recently. In this thesis, we propose four new polynomial multiplication algorithms in characteristic three fields and we show that they are more efficient than the current state-of-the-art methods. We first analyze the well-known algorithms such as the schoolbook method, Karatsuba 2-way and 3-way split methods, Bernstein...
Improved Three-Way Split Formulas for Binary Polynomial and Toeplitz Matrix Vector Products
Cenk, Murat; Hasan, M. Anwar (2013-07-01)
In this paper, we consider three-way split formulas for binary polynomial multiplication and Toeplitz matrix vector product (TMVP). We first recall the best known three-way split formulas for polynomial multiplication: the formulas with six recursive multiplications given by Sunar in a 2006 IEEE Transactions on Computers paper and the formula with five recursive multiplications proposed by Bernstein at CRYPTO 2009. Second, we propose a new set of three-way split formulas for polynomial multiplication that a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Cenk and C. Negre, “Efficient subquadratic space complexity binary polynomial multipliers based on block recombination,”
IEEE Transactions on Computers
, pp. 2273–2287, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31923.