Backward stochastic differential equations with non-Markovian singular terminal values

Download
2019-04-01
Sezer, Ali Devin
Popier, Alexandre
We solve a class of BSDE with a power function f (y) = y(q), q > 1, driving its drift and with the terminal boundary condition xi = infinity . 1( B(m,r)c )(for which q > 2 is assumed) or xi = infinity . 1B(m,r), where B(m, r) is the ball in the path space C([0,T]) of the underlying Brownian motion centered at the constant function m and radius r. The solution involves the derivation and solution of a related heat equation in which f serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet boundary conditions. Although the solution of the heat equation is discontinuous at the corners of the domain, the BSDE has continuous sample paths with the prescribed terminal value.
STOCHASTICS AND DYNAMICS

Suggestions

Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values
Sezer, Ali Devin; Popıer, Alexandre (null; 2017-08-03)
We solve a class of BSDE with a power function f(y) = y q , q > 1, driving its drift and with the terminal boundary condition ξ = ∞ · 1B(m,r) c (for which q > 2 is assumed) or ξ = ∞ · 1B(m,r) , where B(m, r) is the ball in the path space C([0, T]) of the underlying Brownian motion centered at the constant function m and radius r. The solution involves the derivation and solution of a related heat equation in which f serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet b...
Continuity problem for singular BSDE with random terminal time
Samuel, Sharoy Augustine; Popier, Alexandre; Sezer, Ali Devin (2022-1-01)
All Rights Reserved.We study a class of non-linear Backward stochastic differential equations (BSDE) with a superlinear driver process f adapted to a filtration F and over a random time interval [[0, S]] where S is a stopping time of F. The terminal condition ξ is allowed to take the value +∞, i.e., singular. We call a stopping time S solvable with respect to a given BSDE and filtration if the BSDE has a minimal supersolution with terminal value 1 at terminal time S. Our goal is to show existence of solutio...
Continuity problem for backward stochastic differential equations with singular nonmarkovian terminal conditions and deterministic terminal times
Ahmadi, Mahdi; Sezer, Ali Devin; Department of Financial Mathematics (2020-9)
In this thesis we study a class of Backward Stochastic Differential Equations (BSDE) with superlinear driver process f adapted to a filtration F = fFt; t 2 [0; T]g supporting at least a d dimensional Brownian motion and a Poisson random measure on Rm n f0g in a deterministic time interval [0; T]. The superlinearity of f allows terminal conditions that can take the value +1 with positive probability. Such terminal conditions are called “singular.” A terminal condition is said to be Markovian if it is a det...
Differential - Operator solutions for complex partial differential equations
Celebi, O; Sengul, S (1998-07-10)
The solutions of complex partial differential equations of order four are obtained by using polynomial differential operators. A correspondence principle is also derived for the solutions of two different differential equations, imposing conditions on the coefficients.
Nonlocal hydrodynamic type of equations
Gürses, Metin; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-06-01)
We show that the integrable equations of hydrodynamic type admit nonlocal reductions. We first construct such reductions for a general Lax equation and then give several examples. The reduced nonlocal equations are of hydrodynamic type and integrable. They admit Lax representations and hence possess infinitely many conserved quantities.
Citation Formats
A. D. Sezer and A. Popier, “Backward stochastic differential equations with non-Markovian singular terminal values,” STOCHASTICS AND DYNAMICS, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31924.