Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Backward stochastic differential equations with non-Markovian singular terminal values
Download
index.pdf
Date
2019-04-01
Author
Sezer, Ali Devin
Popier, Alexandre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
129
views
43
downloads
Cite This
We solve a class of BSDE with a power function f (y) = y(q), q > 1, driving its drift and with the terminal boundary condition xi = infinity . 1( B(m,r)c )(for which q > 2 is assumed) or xi = infinity . 1B(m,r), where B(m, r) is the ball in the path space C([0,T]) of the underlying Brownian motion centered at the constant function m and radius r. The solution involves the derivation and solution of a related heat equation in which f serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet boundary conditions. Although the solution of the heat equation is discontinuous at the corners of the domain, the BSDE has continuous sample paths with the prescribed terminal value.
Subject Keywords
Backward stochastic differential equations
,
Reaction-diffusion equations
,
Singularity
,
Non-Markovian terminal conditions
URI
https://hdl.handle.net/11511/31924
Journal
STOCHASTICS AND DYNAMICS
DOI
https://doi.org/10.1142/s0219493719500060
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values
Sezer, Ali Devin; Popıer, Alexandre (null; 2017-08-03)
We solve a class of BSDE with a power function f(y) = y q , q > 1, driving its drift and with the terminal boundary condition ξ = ∞ · 1B(m,r) c (for which q > 2 is assumed) or ξ = ∞ · 1B(m,r) , where B(m, r) is the ball in the path space C([0, T]) of the underlying Brownian motion centered at the constant function m and radius r. The solution involves the derivation and solution of a related heat equation in which f serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet b...
Continuity problem for singular BSDE with random terminal time
Samuel, Sharoy Augustine; Popier, Alexandre; Sezer, Ali Devin (2022-1-01)
All Rights Reserved.We study a class of non-linear Backward stochastic differential equations (BSDE) with a superlinear driver process f adapted to a filtration F and over a random time interval [[0, S]] where S is a stopping time of F. The terminal condition ξ is allowed to take the value +∞, i.e., singular. We call a stopping time S solvable with respect to a given BSDE and filtration if the BSDE has a minimal supersolution with terminal value 1 at terminal time S. Our goal is to show existence of solutio...
Continuity problem for backward stochastic differential equations with singular nonmarkovian terminal conditions and deterministic terminal times
Ahmadi, Mahdi; Sezer, Ali Devin; Department of Financial Mathematics (2020-9)
In this thesis we study a class of Backward Stochastic Differential Equations (BSDE) with superlinear driver process f adapted to a filtration F = fFt; t 2 [0; T]g supporting at least a d dimensional Brownian motion and a Poisson random measure on Rm n f0g in a deterministic time interval [0; T]. The superlinearity of f allows terminal conditions that can take the value +1 with positive probability. Such terminal conditions are called “singular.” A terminal condition is said to be Markovian if it is a det...
Differential - Operator solutions for complex partial differential equations
Celebi, O; Sengul, S (1998-07-10)
The solutions of complex partial differential equations of order four are obtained by using polynomial differential operators. A correspondence principle is also derived for the solutions of two different differential equations, imposing conditions on the coefficients.
Nonlocal hydrodynamic type of equations
Gürses, Metin; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-06-01)
We show that the integrable equations of hydrodynamic type admit nonlocal reductions. We first construct such reductions for a general Lax equation and then give several examples. The reduced nonlocal equations are of hydrodynamic type and integrable. They admit Lax representations and hence possess infinitely many conserved quantities.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. D. Sezer and A. Popier, “Backward stochastic differential equations with non-Markovian singular terminal values,”
STOCHASTICS AND DYNAMICS
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31924.