Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics
Date
2011-06-15
Author
YILMAZ, FİKRİYE NURAY
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
371
views
0
downloads
Cite This
The optimal control of unsteady Burgers equation without constraints and with control constraints are solved using the high-level modelling and simulation package COMSOL Multiphysics. Using the first-order optimality conditions, projection and semi-smooth Newton methods are applied for solving the optimality system. The optimality system is solved numerically using the classical iterative approach by integrating the state equation forward in time and the adjoint equation backward in time using the gradient method and considering the optimality system in the space-time cylinder as an elliptic equation and solving it adaptively. The equivalence of the optimality system to the elliptic partial differential equation (PDE) is shown by transforming the Burgers equation by the Cole-Hopf transformation to a linear diffusion type equation. Numerical results obtained with adaptive and nonadaptive elliptic solvers of COMSOL Multiphysics are presented both for the unconstrained and the control constrained case.
Subject Keywords
Optimal control
,
Burgers equation
,
Cole Hopf transformation
,
Semi-smooth Newton method
,
Finite elements
,
COMSOL multiphysics
URI
https://hdl.handle.net/11511/32104
Journal
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
DOI
https://doi.org/10.1016/j.cam.2011.01.002
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Optimal boundary control of the unsteady Burgers equation with simultaneous space-time discretization
Karasözen, Bülent (2014-07-01)
The optimality system for boundary controlled unsteady Burgers equation is transformed after linearization into a biharmonic equation in the space-time domain. It is then discretized in space and time simultaneously, so that standard finite element software can be easily implemented. Numerical experiments with and without control constraint problems confirm the applicability of this approach. Copyright (C) 2013 John Wiley & Sons, Ltd.
NUMERICAL ANALYSIS AND TESTING OF A FULLY DISCRETE, DECOUPLED PENALTY-PROJECTION ALGORITHM FOR MHD IN ELSASSER VARIABLE
AKBAŞ, MİNE; Kaya Merdan, Songül; MOHEBUJJAMAN, Muhammed; rebholz, leo (2016-01-01)
We consider a fully discrete, efficient algorithm for magnetohydrodynamic (MHD) flow that is based on the Elsasser variable formulation and a timestepping scheme that decouples the MHD system but still provides unconditional stability with respect to the timestep. We prove stability and optimal convergence of the scheme, and also connect the scheme to one based on handling each decoupled system with a penalty-projection method. Numerical experiments are given which verify all predicted convergence rates of ...
Implementation of coordinate transformations in periodic finite-element method for modeling rough surface scattering problems
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-05-01)
The coordinate transformation technique (with its current name of transformation electromagnetics) is applied to the finite-element method (FEM) with periodic boundary conditions for efficient Monte Carlo simulation of one-dimensional random rough surface scattering problems. In a unit cell of periodic structure, two coordinate transformations are used, one of which is a real transformation designed to model the rough surface with flat surface, and the other is a complex transformation used to design a perf...
Combining perturbation theory and transformation electromagnetics for finite element solution of Helmholtz-type scattering problems
Kuzuoğlu, Mustafa (2014-10-01)
A numerical method is proposed for efficient solution of scattering from objects with weakly perturbed surfaces by combining the perturbation theory, transformation electro-magnetics and the finite element method. A transformation medium layer is designed over the smooth surface, and the material parameters of the medium are determined by means of a coordinate transformation that maps the smooth surface to the perturbed surface. The perturbed fields within the domain are computed by employing the material p...
Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. N. YILMAZ and B. Karasözen, “Solving optimal control problems for the unsteady Burgers equation in COMSOL Multiphysics,”
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
, pp. 4839–4850, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32104.