A comparative study of modeling of radiative heat transfer using mol solution of dom with gray gas, wide-band correlated-k, and spectral line-based weighted sum of gray gases models

2007-01-01
Cayan, Fatma Nihan
Selçuk, Nevin
A radiation code based on the method of lines (MOL) solution of the discrete ordinates method (DOM) for the prediction of radiative heat transfer in nongray absorbing-emitting media was developed by incorporation of two different gas spectral radiative property models, wide-band correlated-k (WBCK) and spectral line-based weighted sum of gray gases (SLW) models. Predictive accuracy and computational efficiency of the code were assessed by applying it to one- and two-dimensional test problems and benchmarking its steady-state predictions against line-by-line (LBL) solutions and measurements available in the literature. In order to show the improvements accomplished by these two spectral models over and above the ones obtained by gray gas approximation, predictions obtained by spectral models were also compared with those of the gray gas (GG) model. Comparisons reveal that the MOL solution of the DOM with the SLW model produces the most accurate results for radiative heat fluxes and source terms, at the expense of computation time.
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS

Suggestions

The method of lines solution of discrete ordinates method for non-grey media
Cayan, Fatma Nihan; Selçuk, Nevin (2007-03-01)
A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for radiative heat transfer in non-grey absorbing-emitting media was developed by incorporation of a gas spectral radiative property model, namely wide band correlated-k (WBCK) model, which is compatible with MOL solution of DOM. Predictive accuracy of the code was evaluated by applying it to 1-D parallel plate and 2-D axisymmetric cylindrical enclosure problems containing absorbing-emitting medium and benchmarking i...
The method of lines solution of discrete ordinates method for Nongray media experimental
Çayan, Fatma Nihan; Selçuk, Nevin; Department of Chemical Engineering (2006)
A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for the prediction of radiative heat transfer in nongray absorbing-emitting media was developed by incorporation of two different gas spectral radiative property models, namely wide band correlated-k (WBCK) and spectral line-based weighted sum of gray gases (SLW) models. Predictive accuracy and computational efficiency of the developed code were assessed by applying it to the predictions of source term distributions ...
The method of lines solution of discrete ordinates method for radiative heat transfer in cylindrical enclosures
Harmandar, S; Selçuk, Nevin (2004-04-01)
A radiation code based on method of lines solution of discrete ordinates method for radiative heat transfer in axisymmetric cylindrical enclosures containing absorbing-emitting medium was developed and tested for predictive accuracy by applying it to (i) test problems with black and grey walls (ii) a gas turbine combustor simulator enclosing a non-homogeneous absorbing-emitting medium and benchmarking its steady-state predictions against exact solutions and measurements. Comparisons show that it provides ac...
A 3-D radiation model for non-grey gases
Selçuk, Nevin (2009-02-01)
A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model for radiative heat transfer in non-grey absorbing-emitting media for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach was developed. The code was applied to three test problems: two containing isothermal homogenous/non-homogenous water vapor and one non-isothermal water vapor/carbon di...
Assessment of gas radiative property models in the presence of nongray particles
Ates, CİHAN; OZEN, Guzide; Selçuk, Nevin; Külah, Görkem (2018-01-01)
In this study, a radiation code based on the method of lines solution of the discrete ordinates method for the prediction of radiative heat transfer in nongray gaseous media is developed by incorporation of two different spectral gas radiative property models, banded spectral line-based weighted sum of gray gases (banded SLW) and gray wide band (GWB) approximation in the presence of nongray absorbing-emitting-scattering particles. The aim is to introduce an accurate and CPU efficient spectral gas radiation ...
Citation Formats
F. N. Cayan and N. Selçuk, “A comparative study of modeling of radiative heat transfer using mol solution of dom with gray gas, wide-band correlated-k, and spectral line-based weighted sum of gray gases models,” NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, pp. 231–246, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32194.