Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The method of lines solution of discrete ordinates method for Nongray media experimental
Download
index.pdf
Date
2006
Author
Çayan, Fatma Nihan
Metadata
Show full item record
Item Usage Stats
297
views
102
downloads
Cite This
A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for the prediction of radiative heat transfer in nongray absorbing-emitting media was developed by incorporation of two different gas spectral radiative property models, namely wide band correlated-k (WBCK) and spectral line-based weighted sum of gray gases (SLW) models. Predictive accuracy and computational efficiency of the developed code were assessed by applying it to the predictions of source term distributions and net wall radiative heat fluxes in several one- and two-dimensional test problems including isothermal/non-isothermal and homogeneous/non-homogeneous media of water vapor, carbon dioxide or mixture of both, and benchmarking its steady-state predictions against line-by-line (LBL) solutions and measurements available in the literature. In order to demonstrate the improvements brought about by these two spectral models over and above the ones obtained by gray gas approximation, predictions obtained by these spectral models were also compared with those of gray gas model. Comparisons reveal that MOL solution of DOM with SLW model produces the most accurate results for radiative heat fluxes and source terms at the expense of computation time when compared with MOL solution of DOM with WBCK and gray gas models. In an attempt to gain an insight into the conditions under which the source term predictions obtained with gray gas model produce acceptable accuracy for engineering applications when compared with those of gas spectral radiative property models, a parametric study was also performed. Comparisons reveal reasonable agreement for problems containing low concentration of absorbing-emitting media at low temperatures. Overall evaluation of the performance of the radiation code developed in this study points out that it provides accurate solutions with SLW model and can be used with confidence in conjunction with computational fluid dynamics (CFD) codes based on the same approach.
Subject Keywords
Chemical Engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12607401/index.pdf
https://hdl.handle.net/11511/16355
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
An empirical method for the second viral coefficients of non-standard fluids
Kis, Konrad; Orbey, Hasan (Elsevier BV, 1989-9)
A new empirical method is proposed for the extension of Pitzer-Curl type correlations of the second virial coefficient to non-standard fluids as define
Catalytic partial oxidation of propylene on metal surfaces by means of quantum chemical methods
Kızılkaya, Ali Can; Önal, Işık; Department of Chemical Engineering (2010)
Direct, gas phase propylene epoxidation reactions are carried out on model slabs representing Ru-Cu(111) bimetallic and Cu(111) metallic catalyst surfaces with periodic Density Functional Theory (DFT) calculations. Ru-Cu(111) surface is modelled as a Cu(111) monolayer totally covering the surface of Ru(0001) surface underneath. The catalytic activity is evaluated following the generally accepted oxametallacycle mechanism. It is shown that the Ru-Cu(111) surface has a lower energy barrier (0.48 eV) for the s...
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Soyer, Sezen; Önal, Işıl; Department of Chemical Engineering (2005)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitros...
Numerical simulation of laminar reaction flows
Tarhan, Tanıl; Selçuk, Nevin; Department of Chemical Engineering (2004)
Novel sequential and parallel computational fluid dynamic (CFD) codes based on method of lines (MOL) approach were developed for the numerical simulation of multi-component reacting flows using detailed transport and thermodynamic models. Both codes were applied to the prediction of a confined axisymmetric laminar co-flowing methane-air diffusion flame for which experimental data were available in the literature. Flame-sheet model for infinite-rate chemistry and one-, two-, and five- and ten-step reduced fi...
Numerical simulation of radiating flows
Karaismail, Ertan; Selçuk, Nevin; Department of Chemical Engineering (2005)
Predictive accuracy of the previously developed coupled code for the solution of the time-dependent Navier-Stokes equations in conjunction with the radiative transfer equation was first assessed by applying it to the prediction of thermally radiating, hydrodynamically developed laminar pipe flow for which the numerical solution had been reported in the literature. The effect of radiation on flow and temperature fields was demonstrated for different values of conduction to radiation ratio. It was found that ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. N. Çayan, “The method of lines solution of discrete ordinates method for Nongray media experimental,” M.S. - Master of Science, Middle East Technical University, 2006.