Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Download
index.pdf
Date
2005
Author
Soyer, Sezen
Metadata
Show full item record
Item Usage Stats
377
views
134
downloads
Cite This
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitrosamide (NH2NO). The rate limiting step for this part as well as for the total SCR reaction is identified as NH3NHO formation reaction. The last part consists of the decomposition of NH2NO on the cluster which takes advantage of a hydrogen transfer mechanism between the active V=O and V-OH groups. Water and ammonia adsorption and dissociation are investigated on (101) and (001) anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 clusters. Adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated systems are also considered. By use of a (001) relaxed Ti2O9H10 cluster, the role of anatase support on SCR reaction is investigated. Since NH2NO formation on Ti2O9H10 cluster requires lower activation barriers than on V2O5 surface, it is proposed that the role of titanium dioxide on SCR reaction could be forming NH2NO. The role of vanadium oxide is crucial in terms of dissociating this product into H2O and N2. Finally, NH3 adsorption is studied on a V2TiO14H14 cluster which represents a model for vanadia/titania surface.
Subject Keywords
Chemical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12606632/index.pdf
https://hdl.handle.net/11511/15550
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Catalytic partial oxidation of propylene on metal surfaces by means of quantum chemical methods
Kızılkaya, Ali Can; Önal, Işık; Department of Chemical Engineering (2010)
Direct, gas phase propylene epoxidation reactions are carried out on model slabs representing Ru-Cu(111) bimetallic and Cu(111) metallic catalyst surfaces with periodic Density Functional Theory (DFT) calculations. Ru-Cu(111) surface is modelled as a Cu(111) monolayer totally covering the surface of Ru(0001) surface underneath. The catalytic activity is evaluated following the generally accepted oxametallacycle mechanism. It is shown that the Ru-Cu(111) surface has a lower energy barrier (0.48 eV) for the s...
Acidity characterization and adsorption characteristics of cobalt and lead doped SBA15 mesoporous materials
Güner, Özge; Üner, Deniz; Department of Chemical Engineering (2007)
In this study, the surface acidity of Co and/or Pb doped SBA15 mesoporous catalysts were investigated by both diffuse reflectance fourier transform (DRIFT) infrared spectroscopy and transmission mode fourier transform infrared spectroscopy. Pyridine was used to identify the Brønsted and Lewis acid sites of the surface, at room temperature. From the DRIFT spectrum typical stretching vibrations of isolated terminal silanol (Si-OH) groups were observed for all the catalysts. These silanol group bands dissappea...
Chemical vapor deposition of boron carbide
Karaman, Mustafa; Özbelge, Önder; Department of Chemical Engineering (2007)
Boron carbide was produced on tungsten substrate in a dual impinging-jet CVD reactor from a gas mixture of BCl3, CH4, and H2. The experimental setup was designed to minimise the effect of mass transfer on reaction kinetics, which, together with the on-line analysis of the reactor effluent by FTIR, allowed a detailed kinetic investigation possible. The phase and morphology studies of the products were made by XPS, XRD,micro hardness and SEM methods. XPS analysis showed the existence of chemical states attrib...
Experimental investagation of drag reduction effects of polymer additives on turbulent pipe flow
Zeybek, Şerife; Uludağ, Yusuf; Department of Chemical Engineering (2005)
Since the discovery of the drag reduction effects of even small amount of macromolecules in solutions in turbulent pipe flows, there have been many experimental and theoretical studies in order to understand mechanisms behind this phenomenon. Theories have been proposed based on the observations on the change in the characteristics of the turbulent flow near the pipe wall where friction of the momentum transfer between the flow and the conduit takes place. In this study drag reduction in fully developed tur...
Numerical simulation of radiating flows
Karaismail, Ertan; Selçuk, Nevin; Department of Chemical Engineering (2005)
Predictive accuracy of the previously developed coupled code for the solution of the time-dependent Navier-Stokes equations in conjunction with the radiative transfer equation was first assessed by applying it to the prediction of thermally radiating, hydrodynamically developed laminar pipe flow for which the numerical solution had been reported in the literature. The effect of radiation on flow and temperature fields was demonstrated for different values of conduction to radiation ratio. It was found that ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Soyer, “Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface,” M.S. - Master of Science, Middle East Technical University, 2005.