Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas

2016-12-05
ARBAĞ, HÜSEYİN
YAŞYERLİ, SENA
YAŞYERLİ, NAİL
DOĞU, GÜLŞEN
Doğu, Timur
Mesoporous alumina with an ordered pore structure has significant advantages as a catalyst support in terms of minimization of diffusion limitations and coke formation during reforming reactions. Conversion of biogas to synthesis gas through dry reforming of methane, was investigated over Co & Ni impregnated mono- and bi-metallic mesoporous alumina catalysts with ordered pore structures. Comparison of the results obtained with mesoporous alumina catalysts containing 5% Ni and 2.5% Ni-2.5% Co proved that incorporation of cobalt caused significant improvement in activity, as well as stability of the catalyst. Coke formation was also significantly decreased as a result of Co incorporation. Cobalt was found to be in reduced (metallic) state in this active catalyst. However, cobalt could not be reduced up to 750 degrees C in the catalyst containing only 5% Co in mesoporous alumina. In fact, the activity of this catalyst was negligibly low for dry reforming of methane. In this case, strong interaction of cobalt with alumina resulted in the formation of cobalt aluminate, which was difficult to reduce. However, in the case of bi-metallic catalyst, an alloy of Ni-Co was formed and reducibility of this alloy was much better than the reducibility of both 5Co@SGA and 5Ni@SGA. In conclusion, it was shown that bi-metallic Ni-Co based mesoporous alumina supported catalytic material was highly promising for conversion of biogas to synthesis gas, giving stable H-2 and CO selectivity values with coke minimization.
APPLIED CATALYSIS B-ENVIRONMENTAL

Suggestions

Synthesis of new mediators for electrochemical nad/nadh recycling
Khalily, Mohammad Aref; Demir, Ayhan Sıtkı; Department of Chemistry (2011)
The synthesis of enantiopure compounds can be achieved by using dehydrogenases as biocatalysts. For instance, reduction reactions of prochiral compounds (ketones, aldehydes and nitriles) into chiral compounds can be achieved by dehydrogenases. These dehydrogenases are cofactor dependent where cofactor is Nicotinamide Adenin Dinucleotite having some restrictions that confines usage of dehydrogenases in organic synthesis including instability of cofactor in water and high cost. Therefore, suitable recycling m...
Enhanced solubility of siloxy-modified polyhedral oligomeric silsesquioxanes in supercritical carbon dioxide
Demirtas, Cansu; Dilek Hacıhabiboğlu, Çerağ (Elsevier BV, 2019-01-01)
Alkyl siloxy functionalization increases the solubility of polyhedral oligomeric silsesquioxanes (POSS) in supercritical carbon dioxide over an order of magnitude compared to its counterpart with fluoroalkyl groups. The studied component, octatrimethylsiloxy POSS also exhibits higher solubility than other previously studied POSS types with various alkyl and methacryl groups. The octatrimethylsiloxy POSS-CO2 solid-vapor equilibrium curves have been constructed at temperatures between 308 and 328 K by measuri...
Investigation of ruthenium-copper bimetallic catalysts for direct epoxidation of propylene: A DFT study
Kizilkaya, Ali Can; Senkan, Selim; Önal, Işık (2010-09-01)
Propylene epoxidation reactions are carried out on Ru-Cu(1 1 1) and Cu(1 1 1) surfaces with periodic density functional theory (DFT) calculations. Ru-Cu(1 1 1) surface is modeled as Cu(1 1 1) monolayer totally covering the Ru(0 0 0 1) surface underneath, in accordance with the literature. It is shown that the Ru-Cu(1 1 1) surface is ineffective for propylene oxide formation since it has a lower energy barrier (0.48 eV) for the stripping of the allylic hydrogen of propylene and a higher energy barrier (0.92 ...
Development of Ru0/MO2 (M = Ti, Zr, Hf, Ce) catalysts for electrocatalytic hydrogen production from water splitting
Demir, Elif; Önal, Ahmet Muhtar; Department of Chemistry (2017)
In this study, Ru0/MO2 catalysts were prepared by reduction of ruthenium(III) chloride on different types of metal oxides, which were TiO2, ZrO2, CeO2 and HfO2, then catalysts were loaded on glassy carbon (GC) electrodes at same mass loading level, and used as electrocatalysts in 0.5 M H2SO4 solution for hydrogen evolution reaction (HER). Characterization of prepared catalysts were done by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) spectroscopy and X...
Tuning the optoelectronic properties of conjugated polymers via donor-acceptor-donor architectures
Tarkuç, Simge; Toppare, Levent Kamil; Department of Chemistry (2010)
A new class of π-conjugated monomers was synthesized with combination of electron donating and electron-withdrawing heterocyclics to understand the effects of structural differences on electrochemical and optoelectronic properties of the resulting polymers. The use of this alternating donor-acceptor-donor strategy allows the synthesis of low band gap polymers in which the redox, electronic, and optical properties are controlled through easily approachable synthetic modification of the polymer backbone. This...
Citation Formats
H. ARBAĞ, S. YAŞYERLİ, N. YAŞYERLİ, G. DOĞU, and T. Doğu, “Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas,” APPLIED CATALYSIS B-ENVIRONMENTAL, pp. 254–265, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32318.