Adaptive discontinuous Galerkin approximation of optimal control problems governed by transient convection-diffusion equations

Download
2018-01-01
Stoll, Martin
Yücel, Hamdullah
Benner, Peter
In this paper, we investigate a posteriori error estimates of a control-constrained optimal control problem governed by a time-dependent convection diffusion equation. The control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method and by adding a Moreau-Yosida-type penalty function to the cost functional. Residual-based error estimators are proposed for both approaches. The derived error estimators are used as error indicators to guide the mesh refinements. A symmetric interior penalty Galerkin method in space and a backward Euler method in time are applied in order to discretize the optimization problem. Numerical results are presented, which illustrate the performance of the proposed error estimators.
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS

Suggestions

Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations
Yücel, Hamdullah (2015-09-01)
We study a posteriori error estimates for the numerical approximations of state constrained optimal control problems governed by convection diffusion equations, regularized by Moreau-Yosida and Lavrentiev-based techniques. The upwind Symmetric Interior Penalty Galerkin (SIPG) method is used as a discontinuous Galerkin (DG) discretization method. We derive different residual-based error indicators for each regularization technique due to the regularity issues. An adaptive mesh refinement indicated by a poste...
Adaptive Symmetric Interior Penalty Galerkin (SIPG) method for optimal control of convection diffusion equations with control constraints
Yücel, Hamdullah; Karasözen, Bülent (2014-01-02)
In this paper, we study a posteriori error estimates of the upwind symmetric interior penalty Galerkin (SIPG) method for the control constrained optimal control problems governed by linear diffusion-convection-reaction partial differential equations. Residual based error estimators are used for the state, the adjoint and the control. An adaptive mesh refinement indicated by a posteriori error estimates is applied. Numerical examples are presented for convection dominated problems to illustrate the theoretic...
Distributed Optimal Control Problems Governed by Coupled Convection Dominated PDEs with Control Constraints
Yücel, Hamdullah (2013-08-30)
We study the numerical solution of control constrained optimal control problems governed by a system of convection diffusion equations with nonlinear reaction terms, arising from chemical processes. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a posteriori error estimates is applied for both approaches.
A priori error analysis of the upwind symmetric interior penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady convection diffusion equations
AKMAN, Tugba; Yücel, Hamdullah; Karasözen, Bülent (2014-04-01)
In this paper, we analyze the symmetric interior penalty Galerkin (SIPG) for distributed optimal control problems governed by unsteady convection diffusion equations with control constraint bounds. A priori error estimates are derived for the semi- and fully-discrete schemes by using piecewise linear functions. Numerical results are presented, which verify the theoretical results.
A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms
Yücel, Hamdullah; BENNER, Peter (2015-11-01)
In this paper, we study the numerical solution of optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms, arising from chemical processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term is used as a discretization method. We use a residual-based error estimator for the state and the adjoint variables. An adaptive mesh refinement indicated by a posteriori error estimates is applied. The arising saddle point system...
Citation Formats
M. Stoll, H. Yücel, and P. Benner, “Adaptive discontinuous Galerkin approximation of optimal control problems governed by transient convection-diffusion equations,” ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, pp. 407–434, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32323.