Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation
Download
index.pdf
Date
2017-08-01
Author
Sariaydin-Filibelioglu, Ayse
Karasözen, Bülent
Uzunca, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
167
views
78
downloads
Cite This
An energy stable conservative method is developed for the Cahn-Hilliard (CH) equation with the degenerate mobility. The CH equation is discretized in space with the mass conserving symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting semi-discrete nonlinear system of ordinary differential equations are solved in time by the unconditionally energy stable average vector field (AVF) method. We prove that the AVF method preserves the energy decreasing property of the fully discretized CH equation. Numerical results for the quartic double-well and the logarithmic potential functions with constant and degenerate mobility confirm the theoretical convergence rates, accuracy and the performance of the proposed approach.
Subject Keywords
Cahn–Hilliard equation
,
Gradient systems
,
Discontinuous Galerkin discretization
,
Average vector field method
URI
https://hdl.handle.net/11511/32352
Journal
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
DOI
https://doi.org/10.1515/ijnsns-2016-0024
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Energy Stable Discontinuous Galerkin Finite Element Method for the Allen-Cahn Equation
Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse; Yücel, Hamdullah (2018-05-01)
In this paper, we investigate numerical solution of Allen-Cahn equation with constant and degenerate mobility, and with polynomial and logarithmic energy functionals. We discretize the model equation by symmetric interior penalty Galerkin (SIPG) method in space, and by average vector field (AVF) method in time. We show that the energy stable AVF method as the time integrator for gradient systems like the Allen-Cahn equation satisfies the energy decreasing property for fully discrete scheme. Numerical result...
Energy preserving model order reduction of the nonlinear Schrodinger equation
Karasözen, Bülent (2018-12-01)
An energy preserving reduced order model is developed for two dimensional nonlinear Schrodinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orth...
Average Vector Field Splitting Method for Nonlinear Schrodinger Equation
Akkoyunlu, Canan; Karasözen, Bülent (2012-05-02)
The energy preserving average vector field integrator is applied to one and two dimensional Schrodinger equations with symmetric split-step method. The numerical results confirm the long-term preservation of the Hamiltonians, which is essential in simulating periodic waves.
Time-Space Adaptive Method of Time Layers for the Advective Allen-Cahn Equation
UZUNCA, MURAT; Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse (2015-09-18)
We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with nondivergence-free velocity fields. Numerical simulations for convection dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
Discontinuous galerkin finite elements method with structure preserving time integrators for gradient flow equations
Sarıaydın Filibelioğlu, Ayşe; Karasözen, Bülent; Department of Scientific Computing (2015)
Gradient flows are energy driven evolutionary equations such that the energy decreases along solutions. There have been surprisingly a large number of well-known partial differential equations (PDEs) which have the structure of a gradient flow in different research areas such as fluid dynamics, image processing, biology and material sciences. In this study, we focus on two systems which can be modeled by gradient flows;Allen-Cahn and Cahn-Hilliard equations. These equations model the phase separation in mat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Sariaydin-Filibelioglu, B. Karasözen, and M. Uzunca, “Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation,”
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
, pp. 303–314, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32352.