Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation

Download
2017-08-01
Sariaydin-Filibelioglu, Ayse
Karasözen, Bülent
Uzunca, Murat
An energy stable conservative method is developed for the Cahn-Hilliard (CH) equation with the degenerate mobility. The CH equation is discretized in space with the mass conserving symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting semi-discrete nonlinear system of ordinary differential equations are solved in time by the unconditionally energy stable average vector field (AVF) method. We prove that the AVF method preserves the energy decreasing property of the fully discretized CH equation. Numerical results for the quartic double-well and the logarithmic potential functions with constant and degenerate mobility confirm the theoretical convergence rates, accuracy and the performance of the proposed approach.
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION

Suggestions

Energy Stable Discontinuous Galerkin Finite Element Method for the Allen-Cahn Equation
Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse; Yücel, Hamdullah (2018-05-01)
In this paper, we investigate numerical solution of Allen-Cahn equation with constant and degenerate mobility, and with polynomial and logarithmic energy functionals. We discretize the model equation by symmetric interior penalty Galerkin (SIPG) method in space, and by average vector field (AVF) method in time. We show that the energy stable AVF method as the time integrator for gradient systems like the Allen-Cahn equation satisfies the energy decreasing property for fully discrete scheme. Numerical result...
Energy preserving model order reduction of the nonlinear Schrodinger equation
Karasözen, Bülent (2018-12-01)
An energy preserving reduced order model is developed for two dimensional nonlinear Schrodinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orth...
Average Vector Field Splitting Method for Nonlinear Schrodinger Equation
Akkoyunlu, Canan; Karasözen, Bülent (2012-05-02)
The energy preserving average vector field integrator is applied to one and two dimensional Schrodinger equations with symmetric split-step method. The numerical results confirm the long-term preservation of the Hamiltonians, which is essential in simulating periodic waves.
Time-Space Adaptive Method of Time Layers for the Advective Allen-Cahn Equation
UZUNCA, MURAT; Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse (2015-09-18)
We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with nondivergence-free velocity fields. Numerical simulations for convection dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
Discontinuous galerkin finite elements method with structure preserving time integrators for gradient flow equations
Sarıaydın Filibelioğlu, Ayşe; Karasözen, Bülent; Department of Scientific Computing (2015)
Gradient flows are energy driven evolutionary equations such that the energy decreases along solutions. There have been surprisingly a large number of well-known partial differential equations (PDEs) which have the structure of a gradient flow in different research areas such as fluid dynamics, image processing, biology and material sciences. In this study, we focus on two systems which can be modeled by gradient flows;Allen-Cahn and Cahn-Hilliard equations. These equations model the phase separation in mat...
Citation Formats
A. Sariaydin-Filibelioglu, B. Karasözen, and M. Uzunca, “Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation,” INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, pp. 303–314, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32352.