A DFT study on the [VO](1+)-ZSM-5 cluster: direct methanol oxidation to formaldehyde by N2O

2013-01-01
FELLAH, MEHMET FERDİ
Önal, Işık
The mechanism of direct oxidation of methanol to formaldehyde by N2O has been theoretically investigated by means of density functional theory over an extra framework species in ZSM-5 zeolite represented by a [(SiH3)(4)AlO4](1) [V-O](1+) cluster model. The catalytic reactivity of these species is compared with that of mononuclear (Fe-O)(1+) sites in ZSM-5 investigated in our earlier work at the same level of theory (J. Catal. 2011, 282, 191). The [V-O](1+) site in ZSM-5 zeolite shows an enhanced catalytic activity for the reaction. The calculated vibrational frequencies for grafted species on vanadium sites on the surface are in good agreement with the experimental values. According to the theoretical results obtained in this study the [V-O](1+) site in the ZSM-5 catalyst has an important role in the direct catalytic oxidation of methanol to formaldehyde by N2O.
PHYSICAL CHEMISTRY CHEMICAL PHYSICS

Suggestions

A DFT Study of Direct Oxidation of Benzene to Phenol by N2O over [Fe(mu-O)Fe](2+) Complexes in ZSM-5 Zeolite
Fellah, Mehmet Ferdi; Pidko, Evgeny A.; van Santen, Rutger A.; Önal, Işık (2011-05-19)
Density functional theory (DFT) calculations were carried out in a study of the mechanism of benzene oxidation by N2O to phenol over an extra framework dimeric [FeOFe](2+) species in ZSM-5 zeolite represented by a [Si6Al2O9H14(Fe(mu-O)Fe)] cluster model. The catalytic reactivity of such a binuclear species is compared with that of mononuclear Fe2+ and (FeO)(+) sites in ZSM-5 investigated in our earlier works at the same level of theory (J. Phys. Chem. C 2009, 113, 15307; 2010, 114, 12580). The activation en...
A Density Functional Theory Study of Direct Oxidation of Benzene to Phenol by N2O on a [FeO](1+)-ZSM-5 Cluster
Fellah, Mehmet Ferdi; Önal, Işık; van Santen, Rutger A. (2010-07-29)
Density functional theory calculations were carried out in a study of the oxidation of benzene to phenol by N2O on a model (FeO)(1+)-ZSM-5 cluster: the [(SiH3)(4)AlO4(FeO)] cluster. This cluster models the reactivity of Fe3+ oxidic clusters. Results are to be compared with an earlier study (J. Phys. Chem. C 2009, 113, 15307) on a model Fe2+-ZSM-5 cluster. The true activation energies for the elementary reaction step in which phenol is produced appear to be comparable. The major difference between the two sy...
A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface
Soyer, Sezen; Uzun, Alper; Senkan, Selim; Önal, Işık (2006-12-15)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by means of density functional theory (DFT) calculations performed at B3LYP/6-31G** level. The computations indicated that SCR reaction consisted of three main parts. For the first part, ammonia activation on V2O5 was investigated. Ammonia was adsorbed on Bronsted acidic V-OH site as NH4+ species by a non-activated process with an exothermic relati...
A DFT study on nitrotriazines
Türker, Burhan Lemi; Atalar, Taner; Gumus, Selcuk; Camur, Yakup (2009-08-15)
In this study, all possible mono-, di- and tri-nitro-substituted triazine compounds have been considered as potential candidates for high-energy density materials (HEDMs) by using quantum chemical treatment. Geometric and electronic structures, thermodynamic properties and detonation performances of these nitro-substituted triazines have been systematically studied using density functional theory (DFT, B3LYP) at the level of 6-31G(d,p), 6-31+G(d,p), 6-311G(d,p), 6-311+G(d,p) and cc-pVDZ basis sets. Moreover...
A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces
Duzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gulbiter; Önal, Işık (2015-11-15)
This work theoretically investigates propylene epoxidation reaction on Cu2O(001) and CuO(001) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu2O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) an...
Citation Formats
M. F. FELLAH and I. Önal, “A DFT study on the [VO](1+)-ZSM-5 cluster: direct methanol oxidation to formaldehyde by N2O,” PHYSICAL CHEMISTRY CHEMICAL PHYSICS, pp. 13969–13977, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32484.