Survey of trust-region derivative free optimization methods

2007-05-01
In this survey article we give the basic description of the interpolation based derivative free optimization methods and their variants. We review the recent contributions dealing with maintaining the geometry of the interpolation set, the management of the trust region radius and the stopping criteria. Derivative free algorithms developed for problems with some structure, like for partially separable functions, are discussed. Two different versions of derivative free algorithms are applied for the optimization of the configuration of the geometry of a stirrer. Numerical results are presented to show the applicability of the algorithms to practical problems.
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION

Suggestions

Effective optimization with weighted automata on decomposable trees
Ravve, E. V.; Volkovich, Z.; Weber, Gerhard Wilhelm (Informa UK Limited, 2014-01-02)
In this paper, we consider quantitative optimization problems on decomposable discrete systems. We restrict ourselves to labeled trees as the description of the systems and we use weighted automata on them as our computational model. We introduce a new kind of labeled decomposable trees, sum-like weighted labeled trees, and propose a method, which allows us to reduce the solution of an optimization problem, defined in a fragment of Weighted Monadic Second Order Logic, on such a tree to the solution of effec...
Derivative free algorithms for large scale non-smooth optimization and their applications
Tor, Ali Hakan; Karasözen, Bülent; Department of Mathematics (2013)
In this thesis, various numerical methods are developed to solve nonsmooth and in particular, nonconvex optimization problems. More specifically, three numerical algorithms are developed for solving nonsmooth convex optimization problems and one algorithm is proposed to solve nonsmooth nonconvex optimization problems. In general, main differences between algorithms of smooth optimization are in the calculation of search directions, line searches for finding step-sizes and stopping criteria. However, in nonsmoo...
A NEW HEURISTIC APPROACH FOR THE MULTIITEM DYNAMIC LOT-SIZING PROBLEM
KIRCA, O; KOKTEN, M (Elsevier BV, 1994-06-09)
In this paper a framework for a new heuristic approach for solving the single level multi-item capacitated dynamic lot sizing problem is presented. The approach uses an iterative item-by-item strategy for generating solutions to the problem. In each iteration a set of items are scheduled over the planning horizon and the procedure terminates when all items are scheduled. An algorithm that implements this approach is developed in which in each iteration a single item is selected and scheduled over the planni...
Optimization approaches for classification and feature selection using overlapping hyperboxes
Akbulut, Derya; Özdemirel, Nur Evin; İyigün, Cem; Department of Industrial Engineering (2019)
In this thesis, an optimization approach is proposed for the binary classification problem. A mixed integer programming (MIP) model formulation is used to generate hyperboxes as classifiers. The hyperboxes are determined by lower and upper bounds on the feature values, and overlapping of hyperboxes is allowed to reach a balance between misclassification and overfitting. For the test phase, distance-based heuristic algorithms are also developed to classify the overlap and uncovered samples that are not class...
Application of ODSA to population calculation
Ulukaya, Mustafa; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
In this thesis, Optimum Decoding-based Smoothing Algorithm (ODSA) is applied to well-known Discrete Lotka-Volterra Model. The performance of the algorithm is investigated for various parameters by simulations. Moreover, ODSA is compared with the SIR Particle Filter Algorithm. The advantages and disadvantages of the both algorithms are presented.
Citation Formats
B. Karasözen, “Survey of trust-region derivative free optimization methods,” JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, pp. 321–334, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32571.