Transient simulation of radiating flows

2005-06-01
Selçuk, Nevin
Ayranci, I
Tarhan, T
Time-dependent Navier-Stokes equations are solved in conjunction with the radiative transfer equation by coupling a previously developed direct numerical simulation-based computational fluid dynamics code to an existing radiation code, both based on the method of lines approach. The temperature profiles predicted by the coupled code are validated against steady-state solutions available in the literature for laminar, axisymmetric, hydrodynamically developed flow of a gray, absorbing, emitting fluid in a heated pipe. Favorable comparisons show the predictive accuracy and reliability of the coupling strategy employed. Transient solutions for a more realistic heat transfer problem are also demonstrated for simultaneous hydrodynamic and thermal development.
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER

Suggestions

Transient simulation of reacting radiating flows
Uygur, A. Bilge; Tarhan, Tanil; Selçuk, Nevin (2006-10-01)
Laminar methane-air diffusion flame was simulated by coupling a method of lines based parallel direct numerical simulation code with a radiation code based on method of lines solution of discrete ordinates method. The predictions of the code are validated against experimental data as well as numerical results of the same code without radiation model. Comparisons show that incorporation of radiation code to the computational fluid dynamics code results in a significant improvement in the predicted temperatur...
Numerical simulation of transient turbulent flow in a heated pipe
Uygur, Ahmet Bilge; Selçuk, Nevin; Oymak, Olcay; Department of Chemical Engineering (2002)
A computational fluid dynamics (CFD) code based on direct numerical simulation (DNS) and the method of lines MOL approach developed previously for the solution of transient two-dimensional Navier-Stokes equations for turbulent, incompressible, internal, non-isothermal flows with constant wall temperature was applied to prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating. Predictive ability of the code was tested by comparing its r...
Mol solution for transient turbulent flow in a heated pipe
Uygur, AB; Tarhan, T; Selçuk, Nevin (2005-08-01)
A computational fluid dynamics (CFD) code, based on direct numerical simulation (DNS) and method of lines (MOL) approach previously developed for the prediction of transient turbulent, incompressible, confined non-isothermal flows with constant wall temperature was applied to the prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating. The code was parallelized in order to meet the high grid resolutions required by DNS of turbulent fl...
MOL solution of DOM for transient radiative transfer in 3-D scattering media
Ayranci, I; Selçuk, Nevin (2004-04-01)
A methodology based on the method of lines solution of discrete ordinates method for solution of the 3-D transient radiative transfer equation is introduced. The method is applied to the prediction of transient and steady state transmittances in a cubical enclosure containing purely scattering medium and validated against Monte Carlo solutions from the literature. The flexibility of the method for implementation of linear spatial differencing schemes, flux limiters and weighted essentially non-oscillatory m...
Parallelization of a transient method of lines Navier-Stokes code
Ersahin, C; Tarhan, T; Tuncer, İsmail Hakkı; Selçuk, Nevin (2004-01-01)
Parallel implementation of a serial code, namely method of lines ( MOL) solution for momentum equations (MOLS4ME), previously developed for the solution of transient Navier - Stokes equations for incompressible separated internal flows in regular and complex geometries, is described.
Citation Formats
N. Selçuk, I. Ayranci, and T. Tarhan, “Transient simulation of radiating flows,” JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, pp. 151–161, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32576.