Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Transient simulation of reacting radiating flows
Date
2006-10-01
Author
Uygur, A. Bilge
Tarhan, Tanil
Selçuk, Nevin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
Laminar methane-air diffusion flame was simulated by coupling a method of lines based parallel direct numerical simulation code with a radiation code based on method of lines solution of discrete ordinates method. The predictions of the code are validated against experimental data as well as numerical results of the same code without radiation model. Comparisons show that incorporation of radiation code to the computational fluid dynamics code results in a significant improvement in the predicted temperatures. Transient results exhibit the physically expected trends. The coupled code is a promising tool for the simulation of transient reacting radiating flows. (c) 2006 Elsevier SAS. All rights reserved.
Subject Keywords
Unsteady Diffusion Flames
,
Reacting Radiating Flows
,
Method Of Lines (MOL)
,
Parallel Algorithms
URI
https://hdl.handle.net/11511/32679
Journal
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
DOI
https://doi.org/10.1016/j.ijthermalsci.2006.01.008
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Transient simulation of radiating flows
Selçuk, Nevin; Ayranci, I; Tarhan, T (2005-06-01)
Time-dependent Navier-Stokes equations are solved in conjunction with the radiative transfer equation by coupling a previously developed direct numerical simulation-based computational fluid dynamics code to an existing radiation code, both based on the method of lines approach. The temperature profiles predicted by the coupled code are validated against steady-state solutions available in the literature for laminar, axisymmetric, hydrodynamically developed flow of a gray, absorbing, emitting fluid in a hea...
A novel cfd code based on method of lines for reacting flows: Verification on methane/air diffusion flame
Tarhan, Tanil; Selçuk, Nevin (2007-01-01)
A novel parallel computational fluid dynamic (CFD) code based on method of lines (MOL) approach was developed for the numerical simulation of multi-component reacting flows using detailed transport and thermodynamic models. The code was applied to the prediction of a confined axi-symmetric laminar co-flowing methane-air diffusion flame for which experimental data were available in the literature. 1-, 5- and 10-step reduced finite-rate reaction mechanisms were employed for methane-air combustion sub-model. S...
Numerical simulation of transient turbulent flow in a heated pipe
Uygur, Ahmet Bilge; Selçuk, Nevin; Oymak, Olcay; Department of Chemical Engineering (2002)
A computational fluid dynamics (CFD) code based on direct numerical simulation (DNS) and the method of lines MOL approach developed previously for the solution of transient two-dimensional Navier-Stokes equations for turbulent, incompressible, internal, non-isothermal flows with constant wall temperature was applied to prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating. Predictive ability of the code was tested by comparing its r...
Mol solution for transient turbulent flow in a heated pipe
Uygur, AB; Tarhan, T; Selçuk, Nevin (2005-08-01)
A computational fluid dynamics (CFD) code, based on direct numerical simulation (DNS) and method of lines (MOL) approach previously developed for the prediction of transient turbulent, incompressible, confined non-isothermal flows with constant wall temperature was applied to the prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating. The code was parallelized in order to meet the high grid resolutions required by DNS of turbulent fl...
Numerical simulation of laminar reaction flows
Tarhan, Tanıl; Selçuk, Nevin; Department of Chemical Engineering (2004)
Novel sequential and parallel computational fluid dynamic (CFD) codes based on method of lines (MOL) approach were developed for the numerical simulation of multi-component reacting flows using detailed transport and thermodynamic models. Both codes were applied to the prediction of a confined axisymmetric laminar co-flowing methane-air diffusion flame for which experimental data were available in the literature. Flame-sheet model for infinite-rate chemistry and one-, two-, and five- and ten-step reduced fi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. B. Uygur, T. Tarhan, and N. Selçuk, “Transient simulation of reacting radiating flows,”
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
, pp. 969–976, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32679.