Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Text recognition and correction for automated data collection by mobile devices
Date
2014-02-06
Author
Ozarslan, Suleyman
Eren, Pekin Erhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
232
views
0
downloads
Cite This
Participatory sensing is an approach which allows mobile devices such as mobile phones to be used for data collection, analysis and sharing processes by individuals. Data collection is the first and most important part of a participatory sensing system, but it is time consuming for the participants. In this paper, we discuss automatic data collection approaches for reducing the time required for collection, and increasing the amount of collected data. In this context, we explore automated text recognition on images of store receipts which are captured by mobile phone cameras, and the correction of the recognized text. Accordingly, our first goal is to evaluate the performance of the Optical Character Recognition (OCR) method with respect to data collection from store receipt images. Images captured by mobile phones exhibit some typical problems, and common image processing methods cannot handle some of them. Consequently, the second goal is to address these types of problems through our proposed Knowledge Based Correction (KBC) method used in support of the OCR, and also to evaluate the KBC method with respect to the improvement on the accurate recognition rate. Results of the experiments show that the KBC method improves the accurate data recognition rate noticeably.
Subject Keywords
Participatory sensing
,
OCR
,
Knowledge based correction
URI
https://hdl.handle.net/11511/32626
DOI
https://doi.org/10.1117/12.2040668
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
SWARM-based data delivery in Social Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (Elsevier BV, 2019-03-01)
Social Internet of Things (SIoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (QoS) ...
Face recognition using Eigenfaces and neural networks
Akalın, Volkan; Severcan, Mete; Department of Electrical and Electronics Engineering (2003)
A face authentication system based on principal component analysis and neural networks is developed in this thesis. The system consists of three stages; preprocessing, principal component analysis, and recognition. In preprocessing stage, normalization illumination, and head orientation were done. Principal component analysis is applied to find the aspects of face which are important for identification. Eigenvectors and eigenfaces are calculated from the initial face image set. New faces are projected onto ...
Optimizing Multipath Routing With Guaranteed Fault Tolerance in Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (2017-10-01)
Internet of Things (IoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover, and select k-disjoint paths that tolerates the failure while satisfying the quality of service parameter...
SWARM-based data delivery framework in the Ad Hoc Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (2017-12-08)
Internet of Things (IoTs) refers to the rapidly growing network of connected objects that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and devices, fault tolerant routing has been received a significant attention in recent years. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (Q...
IMAGE-BASED OCCUPANCY SENSING AND PRIVACY IMPLICATIONS
Haroon, Hammad; Pekeriçli, Mehmet Koray; Department of Building Science in Architecture (2022-7-07)
As the use of data collection in the built environment increased, data pertaining to building occupancy has gained considerable importance in realms such as energy optimization and spatial usage analytics. However, many data collection approaches infringe on individuals’ rights to privacy, and subsequently their comfort. This thesis aims to address the tension between the proliferation of smart building technologies and individual privacy and autonomy, specifically focusing on image-based sensing. It explor...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ozarslan and P. E. Eren, “Text recognition and correction for automated data collection by mobile devices,” 2014, vol. 9027, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32626.