Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Prediction of torque and inductance displacement characteristics of asymmetrically slotted variable-reluctance motors using a simplified model for numerical field solution
Date
1999-09-01
Author
Ertan, Hulusi Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
For prediction of static and dynamic performance of doubly-salient motors, it is essential to know their flux linkage-position-excitation characteristics and also the static torque characteristics. At the design stage determination of these characteristics presents difficulties because of highly nonlinear behavior of the magnetic circuit. It is possible to use numerical field solution of the complete motor to obtain this information. This, however, requires expertise on a professional program and may be expensive if used to search for the best design. This paper shows that a reduced model can be used to obtain the desired information accurately. It is also shown that in fact obtaining field solutions just for a pair of teeth is enough for accurately predicting the flux linkage and torque characteristics of a motor. The approach introduced here makes possible searching for an optimum design (even on a PC) for maximizing average torque or reducing noise and vibration problems, since the effort for producing the model and computation time are greatly reduced.
Subject Keywords
Doubly salient
,
Field solution
,
Inductance
,
Stepping motor
,
Switched reluctance motor
,
Torque
,
Variable reluctance motor
URI
https://hdl.handle.net/11511/32651
Journal
IEEE TRANSACTIONS ON MAGNETICS
DOI
https://doi.org/10.1109/20.799074
Collections
Graduate School of Natural and Applied Sciences, Article