Calculation of core losses of a six-phase induction motor with third harmonic current injection

Download
2004
Büyükbaş, Afşin
The advantages of using a six-phase induction motor for industrial drives, over the conventional three-phase drive can be summarized as improved reliability, reduction on the power ratings for the static converters and harmonic reduction. A technique of injecting third harmonic zero sequence current components in the phase currents to improve the machine torque density was presented recently by another research study. However, to meaninigfully evaluate the performnce of such machines and/or to be able to make good designs; it is necessary to obtain an accurate mathematical model for the loss calculation. The calculation of high frequency loss in this context presents a very difficult problem. In this thesis a modified version of a loss calculation model, which was developed in another MS thesis will be applied to a six-phase induction motor with third harmonic current injection.

Suggestions

Implementation of a vector controlled induction motor drive
Acar, Akın; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2004)
High dynamic performance, which is obtained from dc motors, became achievable from induction motors with the recent advances in power semiconductors, digital signal processors and development in control techniques. By using field oriented control, torque and flux of the induction motors can be controlled independently as in dc motors. The control performance of field oriented induction motor drive greatly depends on the correct stator flux estimation. In this thesis voltage model is used for the flux estima...
The Design, control and performance performance analysis of AC motor drives with front end diode rectifier utilizing low capacitance DC bus capacitor and comparison with conventional drives
Aban, Vahap Volkan; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2012)
In this thesis the design, control, stability, input power quality, and motor drive performance of ac motor drives with front end three phase diode rectifiers utilizing low capacitance dc bus capacitor are investigated. Detailed computer simulations of conventional motor drives with diode rectifier front end utilizing high capacitance dc bus capacitor and the drives with low capacitance dc bus capacitor are conducted and the performances are compared. Performance evaluation of various active control methods...
Comparison of Two-Level and Three-Level NPC Inverter Topologies for a PMSM Drive for Electric Vehicle Applications
Madan, Alican; Bostancı, Emine (2019-01-01)
Multidimensional comparison of two-level and three-level DC/AC converters for a 120 kW permanent magnet synchronous machine (PMSM) drive is carried out in this study. Comparison of two topologies with Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) by means of output current THD, conduction and switching losses, thermal stresses on semiconductors and switching frequency limitation are investigated at various operating points. Electro-thermal simulation of both topolo...
Design and implementation of a voltage source converter based statcom for reactive power compensation and harmonic filtering
Çetin, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a /Y connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-co...
Prediction of torque and inductance displacement characteristics of asymmetrically slotted variable-reluctance motors using a simplified model for numerical field solution
Ertan, Hulusi Bülent (1999-09-01)
For prediction of static and dynamic performance of doubly-salient motors, it is essential to know their flux linkage-position-excitation characteristics and also the static torque characteristics. At the design stage determination of these characteristics presents difficulties because of highly nonlinear behavior of the magnetic circuit. It is possible to use numerical field solution of the complete motor to obtain this information. This, however, requires expertise on a professional program and may be exp...
Citation Formats
A. Büyükbaş, “Calculation of core losses of a six-phase induction motor with third harmonic current injection,” M.S. - Master of Science, Middle East Technical University, 2004.