Part-Aware Distance Fields for Easy Inbetweening in Arbitrary Dimensions

2013-07-01
The motivation for this work is to explore a possible computer graphics application for a part aware distance field developed recently. Computing in-between shapes is chosen as a toy application. Rather than presenting a highly competitive scheme which continuously morphs one shape into another, our aim is to investigate whether in-betweens may be defined as ordinary averages once a proper shape representation (e.g. a part aware field) is established. The constructions are independent of the dimension of the space in which the shape is embedded as well as the number of shapes to be averaged.

Suggestions

Efficient detection and tracking of salient regions for visual processing on mobile platforms
Serhat, Gülhan; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2009)
Visual Attention is an interesting concept that constantly widens its application areas in the field of image processing and computer vision. The main idea of visual attention is to find the locations on the image that are visually attractive. In this thesis, the visually attractive regions are extracted and tracked in video sequences coming from the vision systems of mobile platforms. First, the salient regions are extracted in each frame and a feature vector is constructed for each one. Then Scale Invaria...
Part-based data-driven 3D shape interpolation
Aydinlilar, Melike; Sahillioğlu, Yusuf (2021-07-01)
An active problem in digital geometry processing is shape interpolation which aims to generate a continuous sequence of in-betweens for a given source and target shape. Unlike traditional approaches that interpolate source and target shapes in isolation, recent data-driven approaches utilize multiple interpolations through intermediate database shapes, and consequently perform better at the expense of a database requirement. In contrast to the existing data-driven approaches that consider intermediate shape...
Edge strength functions as shape priors in image segmentation
Erdem, Erkut; Erdem, Aykut; Tarı, Zehra Sibel (2005-12-01)
Many applications of computer vision requires segmenting out of an object of interest from a given image. Motivated by unlevel-sets formulation of Raviv, Kiryati and Sochen [8] and statistical formulation of Leventon, Grimson and Faugeras [6], we present a new image segmentation method which accounts for prior shape information. Our method depends on Ambrosio-Tortorelli approximation of Mumford-Shah functional. The prior shape is represented by a by-product of this functional, a smooth edge indicator functi...
Part-based data-driven shape interpolation
Aydınlılar, Melike; Sahillioğlu, Yusuf; Department of Computer Engineering (2018)
An active problem in digital geometry processing is shape interpolation which aims to generate a continuous sequence of in-betweens for a given source and target shape. Unlike traditional approaches that interpolate source and target shapes in isolation, recent data-driven approaches utilize multiple interpolations through intermediate database shapes, and consequently perform better at the expense of a database requirement. In contrast to the existing data-driven approaches that consider intermediate shape...
Multiagent moving target search in fully visible grid environments with no speed difference
Eroğul, Can; Polat, Faruk; Department of Computer Engineering (2006)
In this thesis, a new real-time multi-agent moving target pursuit algorithm and a moving target algorithm are developed and implemented. The environment is a grid world, in which a coordinated team of agents cooperatively blocks the possible escape routes of an intelligent target in real-time. Most of the moving target search algorithms presume that the agents are faster than the targets, so the pursuit is sure to end in favor of the agents. In this work, we relax this assumption and assume that all the mov...
Citation Formats
Z. S. Tarı, “Part-Aware Distance Fields for Easy Inbetweening in Arbitrary Dimensions,” 2013, vol. 1, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32706.