Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effects of Al and Fe additions on microstructure and mechanical properties of SnAgCu eutectic lead-free solders
Date
2014-01-21
Author
KANTARCIOGLU, A.
Kalay, Yunus Eren
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
In this study, Sn-3.5Ag-0.9Cu (wt%) lead-free solder was modified with minor additions of Al and Fe. The thermal, microstructural and mechanical behaviors after and before compositional modifications were investigated by a combined study of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and shear strength measurements. EDS results and Darken-Gurry predictions indicated a high concentration of Fe substitution within the Cu6Sn5 at the solder/copper interface which induced desirable effects on undercooling and microstructure evolution. Eutectic SAC and SAC+0.05 wt% Al solder joints exhibit considerable number of brittle proeutectic phases (i.e., Ag3Sn). Proeutectic Ag3Sn formation was found to be suppressed after Fe modification. A new type of Al-Sn-Cu intermetallic compound was detected for Al added specimens. The rod-like morphology of this IMC appears to cause a sharp decrease in the shear strength of Al modified solder joints. The shear strength values for Fe modified solder joints were found to be higher in a wider composition range (0.01-0.1 wt% Fe) as compared to eutectic SAC and SAC+0.05 wt% Al.
Subject Keywords
Shear strength
,
Microstructure
,
Fe and Al modification
,
Lead free SAC alloys
URI
https://hdl.handle.net/11511/32848
Journal
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
DOI
https://doi.org/10.1016/j.msea.2013.11.025
Collections
Department of Metallurgical and Materials Engineering, Article