Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
EEG Classification based on Image Configuration in Social Anxiety Disorder
Download
index.pdf
Date
2019-01-01
Author
Mokatren, Lubna Shibly
Ansari, Rashid
Cetin, Ahmet Enis
Leow, Alex D.
Ajilore, Olusola
Klumpp, Heide
Yarman Vural, Fatoş Tunay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
15
views
83
downloads
The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configuration. Two classification models, one which ignores the configuration (model 1) and one that exploits it with different interpolation methods (model 2), are studied. Performance of these two models is examined for analyzing 34 EEG data channels each consisting of five frequency bands and further decomposed with a filter bank. The data are collected from 64 subjects consisting of healthy controls and patients with SAD. Validity of our hypothesis that model 2 will significantly outperform model 1 is borne out in the results, with accuracy 6– 7% higher for model 2 for each machine learning algorithm we investigated. Convolutional Neural Networks (CNN) were found to provide much better performance than SVM and kNNs. Index Terms— EEG, deep learning, classification.
Subject Keywords
Eeg
,
Deep learning
,
Classification
URI
https://hdl.handle.net/11511/32855
DOI
https://doi.org/10.1109/ner.2019.8717152
Collections
Department of Computer Engineering, Conference / Seminar