Deep learning for the classification of bipolar disorder using fNIRS measurements

Download
2021-2-3
Evgin, Haluk Barkın
Functional Near-Infrared Spectroscopy (fNIRS) is a neural imaging method that is proved to be prominent in the classification of psychiatric disorders, and assertive accuracy results are being obtained using fNIRS. High temporal resolution, feasibility, and partial endurance to head movements are the traits that are highlighting fNIRS among other imaging methods. fNIRS data is a one dimensional multi-channeled time series. In this thesis, bipolar disorder is classified using some state of the art deep learning methods that are specialized for time series classification. Multilayer Perceptrons, one dimensional Convolutional Neural Networks (CNN), one dimensional Residual Neural Networks (ResNet) and one dimensional Encoder networks are trained, evaluated and compared on the fNIRS data where there are 33 control and 28 bipolar subjects. Although the number of subjects is not high enough, promising accuracies are obtained using different test methods. The best classification accuracy of 75.32% is obtained by using the ResNet classifier.

Suggestions

Classification of fNIRS Data Using Deep Learning for Bipolar Disorder Detection
Evgin, Haluk Barkin; Babacan, Oguzhan; Ulusoy, İlkay; Hosgoren, Yasemin; Kusman, Adnan; Sayar, Damla; Baskak, Bora; Ozguven, Halise Devrimci (2019-01-01)
With the use of ecologically validated tools more applicable measurements can be obtained, especially of individuals who have psychological disorders. Functional Near-Infrared Spectroscopy (fNIRS) is a neural imaging method that comes into prominence for imaging patients who have psychological disorders. It is a desired method because of its feasibility, high resolution in time and its partial resistance to head movements. Following the developments in the artificial intelligence, individuals' medical data ...
EEG Classification based on Image Configuration in Social Anxiety Disorder
Mokatren, Lubna Shibly; Ansari, Rashid; Cetin, Ahmet Enis; Leow, Alex D.; Ajilore, Olusola; Klumpp, Heide; Yarman Vural, Fatoş Tunay (2019-01-01)
The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configuration. Two classification models, one which ignores the configuration (model 1) and one that exploits it with different interpolation methods (model 2), are studied. Performance of these two models is examined for analyzing 34 EEG data channels each consisting ...
Deep Learning-Enabled Technologies for Bioimage Analysis
Rabbi, Fazle; Dabbagh, Sajjad Rahmani; Angın, Pelin; Yetisen, Ali Kemal; Tasoglu, Savas (2022-02-01)
Deep learning (DL) is a subfield of machine learning (ML), which has recently demon-strated its potency to significantly improve the quantification and classification workflows in bio-medical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of em...
HYPERSPECTRAL CLASSIFICATION USING STACKED AUTOENCODERS WITH DEEP LEARNING
Özdemir, Ataman; Cetin, C. Yasemin Yardimci (2014-06-27)
In this study, stacked autoencoders which are widely utilized in deep learning research are applied to remote sensing domain for hyperspectral classification. High dimensional hyperspectral data is an excellent candidate for deep learning methods. However, there are no works in literature that focuses on such deep learning approaches for hyperspectral imagery. This study aims to fill this gap by utilizing stacked autoencoders. Experiments are conducted on the Pavia University scene. Using stacked autoencode...
Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy
Ali, Sharib; et. al. (2021-05-01)
The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identif...
Citation Formats
H. B. Evgin, “Deep learning for the classification of bipolar disorder using fNIRS measurements,” M.S. - Master of Science, Middle East Technical University, 2021.