Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Deep learning for the classification of bipolar disorder using fNIRS measurements
Download
12626149.pdf
Date
2021-2-3
Author
Evgin, Haluk Barkın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
503
views
526
downloads
Cite This
Functional Near-Infrared Spectroscopy (fNIRS) is a neural imaging method that is proved to be prominent in the classification of psychiatric disorders, and assertive accuracy results are being obtained using fNIRS. High temporal resolution, feasibility, and partial endurance to head movements are the traits that are highlighting fNIRS among other imaging methods. fNIRS data is a one dimensional multi-channeled time series. In this thesis, bipolar disorder is classified using some state of the art deep learning methods that are specialized for time series classification. Multilayer Perceptrons, one dimensional Convolutional Neural Networks (CNN), one dimensional Residual Neural Networks (ResNet) and one dimensional Encoder networks are trained, evaluated and compared on the fNIRS data where there are 33 control and 28 bipolar subjects. Although the number of subjects is not high enough, promising accuracies are obtained using different test methods. The best classification accuracy of 75.32% is obtained by using the ResNet classifier.
Subject Keywords
fNIRS
,
Deep learning
,
Bipolar disease
,
Classification
URI
https://hdl.handle.net/11511/89738
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Classification of fNIRS Data Using Deep Learning for Bipolar Disorder Detection
Evgin, Haluk Barkin; Babacan, Oguzhan; Ulusoy, İlkay; Hosgoren, Yasemin; Kusman, Adnan; Sayar, Damla; Baskak, Bora; Ozguven, Halise Devrimci (2019-01-01)
With the use of ecologically validated tools more applicable measurements can be obtained, especially of individuals who have psychological disorders. Functional Near-Infrared Spectroscopy (fNIRS) is a neural imaging method that comes into prominence for imaging patients who have psychological disorders. It is a desired method because of its feasibility, high resolution in time and its partial resistance to head movements. Following the developments in the artificial intelligence, individuals' medical data ...
EEG Classification based on Image Configuration in Social Anxiety Disorder
Mokatren, Lubna Shibly; Ansari, Rashid; Cetin, Ahmet Enis; Leow, Alex D.; Ajilore, Olusola; Klumpp, Heide; Yarman Vural, Fatoş Tunay (2019-01-01)
The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configuration. Two classification models, one which ignores the configuration (model 1) and one that exploits it with different interpolation methods (model 2), are studied. Performance of these two models is examined for analyzing 34 EEG data channels each consisting ...
Deep Learning-Enabled Technologies for Bioimage Analysis
Rabbi, Fazle; Dabbagh, Sajjad Rahmani; Angın, Pelin; Yetisen, Ali Kemal; Tasoglu, Savas (2022-02-01)
Deep learning (DL) is a subfield of machine learning (ML), which has recently demon-strated its potency to significantly improve the quantification and classification workflows in bio-medical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of em...
HYPERSPECTRAL CLASSIFICATION USING STACKED AUTOENCODERS WITH DEEP LEARNING
Özdemir, Ataman; Cetin, C. Yasemin Yardimci (2014-06-27)
In this study, stacked autoencoders which are widely utilized in deep learning research are applied to remote sensing domain for hyperspectral classification. High dimensional hyperspectral data is an excellent candidate for deep learning methods. However, there are no works in literature that focuses on such deep learning approaches for hyperspectral imagery. This study aims to fill this gap by utilizing stacked autoencoders. Experiments are conducted on the Pavia University scene. Using stacked autoencode...
Deep Learning for Assignment of Protein Secondary Structure Elements from C Coordinates
Nasr, Kamal Al; Sekmen, Ali; Bilgin, Bahadir; Jones, Christopher; Koku, Ahmet Buğra (2021-01-01)
© 2021 IEEE.This paper presents a Deep Neural network (DNN) system that uses a large set of geometric and categorical features for classification of secondary structure elements (SSEs) in the protein's trace that consists of Calpha atoms on the backbone. A systematical approach is implemented for classification of protein SSE problem. This approach consists of two network architecture search (NAS) algorithms for selecting (1) network architecture and layer connectivity, and (2) regularization parameters. Ea...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. B. Evgin, “Deep learning for the classification of bipolar disorder using fNIRS measurements,” M.S. - Master of Science, Middle East Technical University, 2021.