Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe

Kurt, Zöhre
Spain, Jim C.
When anoxic polluted groundwater encounters the overlying vadose zone an oxic/anoxic interface is created, often near the capillary fringe. Biodegradation of volatile contaminants in the capillary fringe can prevent vapor migration. In contrast, the biodegradation of nonvolatile contaminants in the vadose zone has received comparatively little attention. Nonvolatile compounds do not cause vapor intrusion, but they still move with the groundwater and are major contaminants. Aniline (AN) and diphenylamine (DPA) are examples of toxic nonvolatile contaminants found often at dye and munitions manufacturing sites. In this study, we tested the hypothesis that bacteria can aerobically biodegrade AN and DPA in the capillary fringe and decrease the contaminant concentrations in the anoxic plume beneath the vadose zone. Laboratory multiport columns that represented the unsaturated zone were used to evaluate degradation of AN or DPA in contaminated water. The biodegradation fluxes of the contaminants were estimated to be 113 +/- 26 mg AN.m(-2). h(-1) and 76 +/- 18 mg DPA.m(-2).h(-1) in the presence of bacteria known to degrade AN and DPA. Oxygen and contaminant profiles along with enumeration of bacterial populations indicated that most of the biodegradation took place within the lower part of the capillary fringe. The results indicate that bacteria capable of contaminant biodegradation in the capillary fringe can create a sink for nonvolatile contaminants.


Biodegradation of Chlorobenzene, 1,2-Dichlorobenzene, and 1,4-Dichlorobenzene in the Vadose Zone
Kurt, Zöhre (2013-07-02)
Much of the microbial activity in nature takes place at interfaces, which are often associated with redox discontinuities. One example is the oxic/anoxic interface where polluted groundwater interacts with the overlying vadose zone. We tested whether microbes in the vadose zone can use synthetic chemicals as electron donors and thus protect the overlying air and buildings from groundwater pollutants. Samples from the vadose zone of a site contaminated with chlorobenzene (CB), 1,2-dichlorobenzene (12DCB), an...
Effects of fly ash and desulphogypsum on the geotechnical properties of çayırhan soil
Baytar, Ali Özgür; Çokça, Erdal; Department of Civil Engineering (2005)
Collapse in soils occur when a partially unstable, partially saturated open fabric under high enough stress causing a metastable structure with large soil suction, or in the presence of a bonding or cementing agent, is allowed to free access to additional water. Such excess water reduces soil suction and weakens or destroys the bonding, this causing shear failure at the interaggregate or intergranular contacts, consequently, the soil collapses. In this study, the collapsible soils found in the Çayirhan Ther...
Biodegradation of cis-Dichloroethene and Vinyl Chloride in the Capillary Fringe
Kurt, Zöhre; Spain, Jim C. (2014-11-18)
Volatile chlorinated compounds are major pollutants in groundwater, and they pose a risk of vapor intrusion into buildings. Vapor intrusion can be prevented by natural attenuation in the vadose zone if biodegradation mechanisms can be established. In this study, we tested the hypothesis that bacteria can use cis-dichloroethene (cis-DCE) or vinyl chloride (VC) as an electron donor in the vadose zone. Anoxic water containing cis-DCE or VC was pumped continuously beneath laboratory columns that represented the...
Evaluation of Site Response with Alternative Methods: A Case Study for Engineering Implications
Sisman, Fatma Nurten; Askan Gündoğan, Ayşegül; Asten, Michael (Springer Science and Business Media LLC, 2018-01-01)
In this paper, efficiency of alternative geophysical techniques for site response is evaluated in two sedimentary basins on the North Anatolian Fault Zone. For this purpose, fundamental frequencies of soils and corresponding amplitudes obtained from empirical horizontal-to-vertical spectral ratio curves from microtremors, weak motions and strong motions are compared with results from one-dimensional theoretical transfer functions. Theoretical transfer functions are computed using S-wave velocity profiles de...
Investigation of sodium and potassium ions in relation to bioflocculation of mixed culture microorganisms
Kara, Fadime; Sanin, Faika Dilek; Department of Biotechnology (2007)
Bioflocculation happens naturally and microorganisms aggregate into flocs during wastewater treatment. It is critical to understand the mechanisms of bioflocculation and its impact on the following solid/liquid separation process since seperation by settling is one of the key aspects that determine the efficiency and the overall economy of activated sludge systems. Bioflocculation occurs via extracellular polymeric substances (EPS) and cations by creating a matrix to hold various floc components together so...
Citation Formats
Z. Kurt and J. C. Spain, “Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe,” ENVIRONMENTAL SCIENCE & TECHNOLOGY, pp. 10172–10178, 2016, Accessed: 00, 2020. [Online]. Available: