Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Torque distribution in a six-legged robot
Date
2007-02-01
Author
Erden, Mustafa Suphi
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
124
views
0
downloads
Cite This
In this paper, distribution of required forces and moments to the supporting legs of a six-legged robot is handled as a torque-distribution problem. This approach is comparatively contrasted to the conventional approach of tip-point force distribution. The formulation of dynamics is performed by using the joint torques as the primary variables. The sum of the squares of the joint torques on the supporting legs is considered to be proportional to the dissipated power. The objective function is constructed as this sum, and the problem is formulated as to minimize this quadratic objective function with respect to linear equality and inequality constraints. It is demonstrated that the torque-distribution scheme results in a much more efficient distribution compared with the conventional scheme of force distribution. In contrast to the force distribution, the torque-distribution scheme makes good use of interaction forces and friction in order to minimize the required joint torques.
Subject Keywords
Force distribution
,
Legged locomotion
,
Robot dynamics
,
Six-legged robot
,
Torque distribution
URI
https://hdl.handle.net/11511/32958
Journal
IEEE TRANSACTIONS ON ROBOTICS
DOI
https://doi.org/10.1109/tro.2006.886276
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Torque distribution for a six-legged robot
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (2006-01-01)
This paper dwells upon the torque distribution of a six-legged robot - considering minimum energy consumption. This distribution, named "torque distribution", is performed by minimizing the square-sum of the joint torques. For multileged robots the conventional approach is to perform the force-moment distribution by minimizing the square-sum of the tip point force components. This general approach of "force distribution" is compared with the proposed approach of "torque distribution" and it is concluded tha...
Design, modeling and preliminary control of a compliant hexapod robot
Saranlı, Uluç; Koditschek, Daniel E. (2000-01-01)
In this paper, we present the design, modeling and preliminary control of RHex, an autonomous dynamically stable hexapod possessing merely six actuated degrees of freedom (at the hip attachment of each leg). Our design emphasizes mechanical simplicity as well as power and computational autonomy, critical components for legged robotics applications. A compliant hexapod model, used to build a simulation environment closely informed the design and construction of the physical machine and promises to inform, si...
STABILITY OF CONTROL FORCES IN REDUNDANT MULTIBODY SYSTEMS
IDER, SK (1996-01-03)
In this paper inverse dynamics of redundant multibody systems using a minimum number of control forces is formulated. It is shown that the control forces and the task accelerations may become noncausal at certain configurations, yielding the dynamical equation set of the system to be singular. For a given set of tasks, each different set of actuators leads to a different system motion and also to different singular configurations. To avoid the singularities in the numerical solution, the dynamical equations...
Analysis of wave gaits for energy efficiency
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (2007-10-01)
In this paper an energy efficiency analysis of wave gaits is performed for a six-legged walking robot. A simulation model of the robot is used to obtain the data demonstrating the energy consumption while walking in different modes and with varying parameters. Based on the analysis of this data some strategies are derived in order to minimize the search effort for determining the parameters of the gaits for an energy efficient walk. Then, similar data is obtained from an actual experimental setup, in which ...
Optimal control of a half-circular compliant legged monopod
AYDIN, Yasemin Ozkan; Saranlı, Afşar; Yazıcıoğlu, Yiğit; Saranlı, Uluç; Leblebicioğlu, Mehmet Kemal (2014-12-01)
This paper investigates an optimal control strategy for the dynamic locomotion of a simplified planar compliant half-circular legged monopod model. We first present a novel planar leg model which incorporates rolling kinematics and a new compliance model, motivated by the use of similar leg designs on existing platforms. Two locomotion tasks, moving at a prescribed horizontal velocity and a one-shot jump to maximum possible height or length, are then investigated within this model. The designs of two high-l...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. S. Erden and M. K. Leblebicioğlu, “Torque distribution in a six-legged robot,”
IEEE TRANSACTIONS ON ROBOTICS
, pp. 179–186, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32958.