Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal control of a half-circular compliant legged monopod
Date
2014-12-01
Author
AYDIN, Yasemin Ozkan
Saranlı, Afşar
Yazıcıoğlu, Yiğit
Saranlı, Uluç
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
259
views
0
downloads
Cite This
This paper investigates an optimal control strategy for the dynamic locomotion of a simplified planar compliant half-circular legged monopod model. We first present a novel planar leg model which incorporates rolling kinematics and a new compliance model, motivated by the use of similar leg designs on existing platforms. Two locomotion tasks, moving at a prescribed horizontal velocity and a one-shot jump to maximum possible height or length, are then investigated within this model. The designs of two high-level optimal controllers for these tasks are then described to investigate the performance and stability of resulting behaviors, based on the optimization of trajectory parameters for a closed-loop low-level Proportional-Derivative controller at the hip. Our results show that with these optimized parameters the robot can achieve stable locomotion at a desired horizontal velocity and can successfully jump over and across a specified height and length. Finally, the composition of objective functions capturing multiple criteria is also investigated for the one-shot jump task.
Subject Keywords
Optimal control
,
RHex
,
Monopod
,
Compliant leg
,
Legged robots
URI
https://hdl.handle.net/11511/37693
Journal
CONTROL ENGINEERING PRACTICE
DOI
https://doi.org/10.1016/j.conengprac.2014.08.005
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Control of a differentially driven mobile robot using radial basis function based neural networks
Bayar, Gökhan; Konukseven, Erhan İlhan; Buǧra Koku, A. (2008-12-01)
This paper proposes the use of radial basis function neural networks approach to the solution of a mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the mobile robot, a neural network control system has been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of award. Making use of the potential of neural networks to learn the relationships, the desired reference orientation and the error...
Adaptive longitudinal control of aircraft using synthetic jets
Muse, Jonathan A.; Kutay, Ali Türker; Calise, Anthony J. (2007-01-01)
This paper presents an adaptive control approach for controlling the longitudinal dynamics of a generic lifting surface using imbedded flow control actuators. Such actuators offer a unique opportunity for rapid maneuvering and gust rejection with low power consumption. The model's state is controlled over a broad range of angles of attack and model dynamic characteristics when the baseline flow is fully attached using bi-directional pitching moment that is effected by flow-controlled trapped vorticity conce...
Sliding mode control for non-linear systems with adaptive sliding surfaces
Durmaz, Burak; Özgören, Mustafa Kemal; SALAMCİ, METİN UYMAZ (2012-02-01)
This study covers the sliding mode control design with adaptive sliding surfaces for a class of affine non-linear systems, which can be described by (x) over dot = A(x)x + B(x)u + f(x) + d(x, t). The main streamline of the study is the sliding surface design for such systems. The sliding surfaces are designed to be moving with varying slopes and offsets. The varying sliding surface parameters are determined by solving the state-dependent Riccati equations online during the control process. Thus, the sliding...
Optimal Control of a Smart Beam by Using a Luenberger Observer
Onat, Cem; Şahin, Melin; Yaman, Yavuz (2013-06-26)
This paper presents the design of an optimal vibration control mechanism, namely an LQR controller, with a Luenberger observer for a smart beam having surface bonded piezoelectric sensors and actuators. The approach intends to suppress the vibrations of the first flexural resonance of the smart beam. The smart beam studied was a cantilever aluminium beam with eight surface bonded Lead-Zirconate-Titanate (PZT) patches in bimorph configuration. The smart beam was excited at its first resonance frequency (appr...
Experimental evaluation of cable drum systems as linear motion sensors
KILIÇ, ERGİN; Dölen, Melik; Koku, Ahmet Buğra (2011-04-15)
This study evaluates cable-drum mechanisms as linear motion sensors for certain CNC applications. In this work, the dynamical attributes of a generic device are studied experimentally. The conducted research indicates that despite the significant traction force induced between the cable and its drum, small fluctuations in mechanism's speed yields a considerable (micro) slip at the interface.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. O. AYDIN, A. Saranlı, Y. Yazıcıoğlu, U. Saranlı, and M. K. Leblebicioğlu, “Optimal control of a half-circular compliant legged monopod,”
CONTROL ENGINEERING PRACTICE
, pp. 10–21, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37693.