Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ELECTRICAL RESISTIVITIES OF LIQUID AL-MG AND AL-CU ALLOYS
Date
1989-05-01
Author
KHAJIL, TMA
Tomak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
217
views
0
downloads
Cite This
The electrical resistivity of liquid Al−Mg and Al−Cu alloys is calculated using both the Faber-Ziman and «2k F» scattering theories. The partial structure factors are described by the hard-sphere system. The calculated resistivity values are in qualitative agreement with available experimental data.
URI
https://hdl.handle.net/11511/33010
Journal
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS
DOI
https://doi.org/10.1007/bf02451560
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Electrical resistivities of liquid Li-Sn and Na-Pb alloys
Khajil, T. M. A.; Tomak, Mehmet (American Physical Society (APS), 1988-06-01)
The resistivity of liquid Li-Sn and Na-Pb alloys is calculated using the theory of ‘‘2 k F ’’ scattering theory recently developed by Morgan et al. The partial structure factors are described by the mean-spherical approximation for a system of hard spheres with Yukawa tails. The calculated resistivity values are in very good agreement with experiment. The improvement over the widely used Faber-Ziman formalism is impressive.
Thermal stresses in elastic-plastic tubes with temperature-dependent mechanical and thermal properties
Orcan, Y; Eraslan, Ahmet Nedim (2001-11-01)
The thermoelastic-plastic deformations of internal heat-generating tubes are investigated by considering the temperature dependence of the thermal conductivity coefficient, Young's modulus, the coefficient of thermal expansion, and the yield limit of the material. A model describing the elastic-plastic behavior of the tube is developed. The model consists of a system of two second-order ordinary differential equations and a first-order ordinary differential equation involving nonlinear temperature-dependent...
Finite mean free paths and the electrical resistivity of liquid simple metals and binary alloys
Khajil, T. M. A.; Daver, Fugen; Tomak, Mehmet (Wiley, 1986-11-1)
The finite mean‐free‐path correction to the Ziman formalism of the resistivity for liquid metals and some binary alloys are calculated using the Ferraz‐March approach.
Acoustic phonons scattering mobility and carrier effective mass in In6S7 crystals
Qasrawi, A. F.; Hasanlı, Nızamı (Elsevier BV, 2006-12-21)
Systematic dark electrical resistivity and Hall coefficient measurements have been carried out in the temperature range of 170-320 K on n-type In6S7 crystals. The analysis of the electrical resistivity and carrier concentration reveals the intrinsic type of conduction with an average energy band gap of similar to 0.75 eV The carrier effective masses of the conduction and valence bands were calculated from the intrinsic temperature-dependent carrier concentration data and were found to be 0.565m(0) and 2.020...
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. KHAJIL and M. Tomak, “ELECTRICAL RESISTIVITIES OF LIQUID AL-MG AND AL-CU ALLOYS,”
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS
, pp. 739–744, 1989, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33010.