Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simple Estimation of the Surface Area of Irregular 3D Particles
Date
2016-08-01
Author
Erdoğan, Sinan Turhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
73
views
0
downloads
Cite This
Shape-related properties of irregular particles are of interest in many fields. The volume and dimensions of rocks, such as coarse and larger fine concrete aggregates, can be physically measured rather easily. However, the surface area is difficult to measure physically, if at all possible. A combination of computed tomography and spherical harmonic analysis can be used to calculate the surface areas of micrometer-sized to centimeter-sized particles. This paper compares the success of several approaches that use easy-to-measure properties, specifically the orthogonal length, width, and thickness of a particle and its volume to estimate its surface area. A training set of 3,359 particles varying widely in size and shape is used to develop regression equations between various shape parameters. These equations are then used to estimate surface areas of cement and aggregate particles in three different validation sets. Improvements are offered to some existing surface area estimation methods. Finally, a novel method is proposed that estimates surface area with a mean absolute percentage error of 2.8 to 3.8% and with 14% individual particle error.
Subject Keywords
Surface area
,
Volume
,
Particle shape
,
Three-dimensional (3D)
,
Aggregate
,
Computed tomography
URI
https://hdl.handle.net/11511/33202
Journal
JOURNAL OF MATERIALS IN CIVIL ENGINEERING
DOI
https://doi.org/10.1061/(asce)mt.1943-5533.0001575
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Spherical harmonic-based random fields based on real particle 3D data: Improved numerical algorithm and quantitative comparison to real particles
Liu, X.; Garboczi, E. J.; Grigoriu, M.; Lu, Y.; Erdoğan, Sinan Turhan (2011-02-15)
The shape of particles often plays an important role in how they are used and in the properties of composite systems in which they are incorporated. When building models of systems that include real particles, it is often of interest to generate new, virtual particles whose 3D shape statistics are based on the 3D shape statistics of a collection of real particles. A previous paper showed mathematically how this can be carried out, but only had a small set of real particle shape data to use and only made a l...
Combined effect of point defects and layer number on the adsorption of benzene and toluene on graphene
Akay, Tugce Irfan; Toffoli, Daniele; Toffoli, Hande (Elsevier BV, 2019-06-30)
Understanding the adsorption properties of organic molecules on graphene-based substrates is important for such applications as air and water filters. Pristine graphene is often the model substrate used in the theoretical investigations of this problem. While useful, pristine single-layer graphene is however an idealized model. In this work, we assess the effect of the presence of point defects (single vacancy, divacancy, and the Stone-Wales defect) in single-layer and bilayer graphene on the energetics of ...
3-dimensional measurements of morphological properties of particles
Hicyilmaz, C; Bilgen, S (1996-09-26)
Morphological properties of particles are important in mineral processing. Flotation recoveries are affected by surface roughness and acuteness of particles. A novel technique was developed to measure the morphological properties of particles 3- dimensionally. Pyrite sample ground in autogeneous and ball mill to differentiate the surface properties was used in this study.
Modelling of Diffusion in Random Packings of Core-Shell Particles
Hatipoğlu, Emre; Koku, Harun (Hacettepe University, 2017-04-01)
Core-Shell particles are commonly used materials in chromatography. In this study, a mathematical model that mimics diffusion around Core-Shell particles was developed. A random-walk based algorithm was implemented to simulate diffusion and a Core-Shell particle geometry was computationally formed, based on simple geometric constructs and relations. Diffusion simulations were carried out on a randomly packed geometry formed from these particles. The behavior of time-dependent diffusivity data obtained from ...
Some properties of irregular 3-D particles
Taylor, MA; Garboczi, EJ; Erdoğan, Sinan Turhan; Fowler, DW (2006-02-16)
This paper discusses some of the properties of irregular particles that are of interest to engineers, including volume, density and surface area. Numerical and statistical information on these properties is essential (a) for a better understanding of particulates, (b) to suggest more efficient ways to utilize particulate materials and (c) to permit the creation of mathematical models that can reduce the need for lengthy real-world testing. While the motivation, examples and applications are from the constru...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. T. Erdoğan, “Simple Estimation of the Surface Area of Irregular 3D Particles,”
JOURNAL OF MATERIALS IN CIVIL ENGINEERING
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33202.