Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of perfectly matched double negative layers via complex coordinate transformations
Date
2006-12-01
Author
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
310
views
0
downloads
Cite This
Complex coordinate transformations are introduced for the analysis of time-harmonic electromagnetic wave propagation in perfectly matched double negative layers. The layer is perfectly matched to free space in the sense that any incident plane wave is transmitted through the free space-material interface without reflection, irrespective of the frequency and angle of incidence of the plane wave. The material constitutive parameters are obtained by mapping spatial coordinates into a manifold in complex space. The layer turns out to be anisotropic in general, and the special case where the medium is isotropic can be deduced from the coordinate transformations. The left-handedness, as well as the reversal in phase velocity appear naturally as a result of the mapping of the spatial coordinates into complex space. The consequences of this analysis are demonstrated by some examples.
Subject Keywords
Complex media
,
Double negative media
,
Meta-materials
,
Negative index materials
,
Negative refraction
,
Perfectly matched layers (PMLs)
URI
https://hdl.handle.net/11511/33225
Journal
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
DOI
https://doi.org/10.1109/tap.2006.886489
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
EQUIVALENT ELASTIC PROPERTIES OF LATTICES USING NON-UNIFORMLY DISTRIBUTED POINT CLOUD
Yormaz, Engin Ege; Tuncay, Kağan; Department of Civil Engineering (2022-11-22)
A method based on the equivalency of strain energy density is proposed for finding the elastic parameters of non-uniformly distributed lattice models in 2D with a Poisson’s ratio of 1/3. Lattice members are assumed to carry only normal force. Hence, the elasticity modulus times the area is the only defining parameter for each lattice member. The method is implemented in MATLAB and it is tested with regularly structured lattices whose solutions can be calculated exactly. A “User-Friendly Lattice Model P...
Numerical Analysis of One-Dimensional Sound Propagation Through a Duct Containing Water Droplets
Arslan, Ersen; Özyörük, Yusuf; Çalışkan, Mehmet (2017-03-01)
In this paper sound propagation through an air-filled circular duct containing water droplets has been studied by solving numerically one-dimensional linearized Euler equations in frequency domain. Interactions between the liquid and gas phases were accounted for by proper source terms. Waves were introduced into the domain via Perfectly Matched Layers (PML) equations applied in finite regions adjacent to the truncated ends of the duct. Absorption and dispersion results due to energy transfer from air to th...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Stabilizing subgrid FEM solution of the natural convection flow under high magnitude magnetic field on sinusoidal corrugated enclosure
Aydın, S. H.; Tezer, Münevver (Informa UK Limited, 2019-7-7)
This study deals with the stabilized finite element solution of the steady, natural convection flow in an enclosure under a magnetic field applied perpendicular to the sinusoidal corrugated vertical walls of the enclosure, in terms of primitive variables. Several vertical sinusoidal functions are selected for the comparison. A stabilized FEM scheme called SSM is proposed in order to obtain a stable solution for the high values of problem parameters with a cheap computational cost. Proposed numerical scheme ...
NUMERICAL STABILITY OF RBF APPROXIMATION FOR UNSTEADY MHD FLOW EQUATIONS
Gurbuz, Merve; Tezer, Münevver (2019-01-01)
In this study, the radial basis function (RBF) approximation is applied for solving the unsteady fluid flow and magnetohydrodynamic (MHD) convection flow problems with the use of explicit Euler time discretization and relaxation parameters to accelerate the convergence. The stability analysis is also carried out in terms of the spectral radius of related RBF discretized coefficient matrices. The optimal choices of the time increment, relaxation parameters and physical problem parameters are found for achiev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kuzuoğlu, “Analysis of perfectly matched double negative layers via complex coordinate transformations,”
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
, pp. 3695–3699, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33225.