Analysis of perfectly matched double negative layers via complex coordinate transformations

Complex coordinate transformations are introduced for the analysis of time-harmonic electromagnetic wave propagation in perfectly matched double negative layers. The layer is perfectly matched to free space in the sense that any incident plane wave is transmitted through the free space-material interface without reflection, irrespective of the frequency and angle of incidence of the plane wave. The material constitutive parameters are obtained by mapping spatial coordinates into a manifold in complex space. The layer turns out to be anisotropic in general, and the special case where the medium is isotropic can be deduced from the coordinate transformations. The left-handedness, as well as the reversal in phase velocity appear naturally as a result of the mapping of the spatial coordinates into complex space. The consequences of this analysis are demonstrated by some examples.


Full-Wave Analysis of Three-Dimensional Optical Metamaterials Involving Deformed Nanowires
Karaosmanoglu, B.; Yılmaz, Ayşen; Ergül, Özgür Salih (2015-09-12)
We present computationally intensive electromagnetic analysis of metamaterials involving deformed nanowires. Random deformations are introduced to modify perfect nanowires in order to investigate the effect of geometric deviations on scattering properties of optical metamaterials. Numerical simulations of realistic structures of finite extent are performed accurately and efficiently using a rigorous simulation environment based on surface formulations and the multilevel fast multipole algorithm (MLFMA). Sta...
On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures
Kocaman, Serdar; Panoiu, Nicolae C.; Lu, Ming; Wong, Chee Wei (2012-02-15)
We demonstrate chip-scale flat-top filters at near-IR wavelengths using negative index photonic crystal based MachZehnder interferometers. Supported by full three-dimensional numerical simulations, we experimentally demonstrate a new approach for engineering high-pass, low-pass, bandpass, and band-reject filters, based on designing the photonic band diagram both within the bandgap frequency region and away from it. We further show that our approach can be used to design filters that have tunable multilevel ...
Numerical Analysis of One-Dimensional Sound Propagation Through a Duct Containing Water Droplets
Arslan, Ersen; Özyörük, Yusuf; Çalışkan, Mehmet (2017-03-01)
In this paper sound propagation through an air-filled circular duct containing water droplets has been studied by solving numerically one-dimensional linearized Euler equations in frequency domain. Interactions between the liquid and gas phases were accounted for by proper source terms. Waves were introduced into the domain via Perfectly Matched Layers (PML) equations applied in finite regions adjacent to the truncated ends of the duct. Absorption and dispersion results due to energy transfer from air to th...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Stabilizing subgrid FEM solution of the natural convection flow under high magnitude magnetic field on sinusoidal corrugated enclosure
Aydın, S. H.; Tezer, Münevver (Informa UK Limited, 2019-7-7)
This study deals with the stabilized finite element solution of the steady, natural convection flow in an enclosure under a magnetic field applied perpendicular to the sinusoidal corrugated vertical walls of the enclosure, in terms of primitive variables. Several vertical sinusoidal functions are selected for the comparison. A stabilized FEM scheme called SSM is proposed in order to obtain a stable solution for the high values of problem parameters with a cheap computational cost. Proposed numerical scheme ...
Citation Formats
M. Kuzuoğlu, “Analysis of perfectly matched double negative layers via complex coordinate transformations,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, pp. 3695–3699, 2006, Accessed: 00, 2020. [Online]. Available: