Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
NUMERICAL STABILITY OF RBF APPROXIMATION FOR UNSTEADY MHD FLOW EQUATIONS
Date
2019-01-01
Author
Gurbuz, Merve
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
202
views
0
downloads
Cite This
In this study, the radial basis function (RBF) approximation is applied for solving the unsteady fluid flow and magnetohydrodynamic (MHD) convection flow problems with the use of explicit Euler time discretization and relaxation parameters to accelerate the convergence. The stability analysis is also carried out in terms of the spectral radius of related RBF discretized coefficient matrices. The optimal choices of the time increment, relaxation parameters and physical problem parameters are found for achieving stable solutions. It is observed that the maximum eigenvalues of the coefficient matrices decrease with an increase in the time increment when the relaxation parameters are decreasing. Although the time derivative is discretized using explicit Euler method, one does not need to use small time increment for obtaining stable results. The flow, isotherms and pressure behaviors are simulated at steady-state for several values of problem parameters using time increment and relaxation parameters which lead to stable solutions.
Subject Keywords
Radial Basis Function
,
Stability Analysis
,
Navier-Stokes Equations
,
MHD Convection Flow
URI
https://hdl.handle.net/11511/53148
Journal
APPLIED AND COMPUTATIONAL MATHEMATICS
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
Numerical Solution and Stability Analysis of Transient MHD Duct Flow
Tezer, Münevver (2018-11-01)
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms of the velocity of the fluid and the induced magnetic field by using the radial basis function (RBF) approximation. The inhomogeneities in the Poisson’s type MHD equations are approximated using the polynomial functions (1+r) and the particular solution is found satisfying both the equations and the boundary conditions (no-slip and insulated walls). The Euler scheme is used for advancing the solution to ste...
Implementation of k-epsilon turbulence models in a two dimensional parallel navier-stokes solver on hybrid grids
Kalkan, Onur Ozan; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2014)
In this thesis, the popular k-ε turbulence model is implemented on a parallel, 2-dimensional, explicit, density-based, finite volume based Navier-Stokes solver works on hybrid grids, HYP2D. Among the other versions available in the open literature, standard version of the k-ε turbulence mode is studied. Launder-Spalding and Chieng-Launder wall functions are adapted to the turbulence model in order to investigate the effects of the strong gradients in the vicinity of the wall on the turbulence. In order to i...
Numerical solution of nonlinear reaction-diffusion and wave equations
Meral, Gülnihal; Tezer, Münevver; Department of Mathematics (2009)
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quad...
Dual reciprocity boundary element method for magnetohydrodynamic flow using radial basis functions
Tezer, Münevver (2002-02-01)
A dual reciprocity boundary element method is given to obtain the solution in terms of velocity and induced magnetic field for the study of MHD (magnetohydrodynamic) flow through a rectangular duct having insulating walls. The equations are transformed to two types of nonlinear Poisson equations and the right-hand sides in these equations are approximated using combinations of two classes of radial basis functions (the value of the function and its normal derivatives are utilized for approximation). Computa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Gurbuz and M. Tezer, “NUMERICAL STABILITY OF RBF APPROXIMATION FOR UNSTEADY MHD FLOW EQUATIONS,”
APPLIED AND COMPUTATIONAL MATHEMATICS
, pp. 123–134, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53148.